Skip to main content
Log in

Simulated NNLO for high-p T observables in vector boson + jets production at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present a study of higher-order QCD corrections beyond NLO to processes with an electroweak vector boson, W or Z, in association with jets. We focus on the regions of high transverse momenta of commonly used differential distributions. We employ the LoopSim method to merge NLO samples of different multiplicity obtained from mcfm and from blackhat+sherpa in order to compute the dominant part of the NNLO corrections for high-p T observables. We find that these corrections are indeed substantial for a number of experimentally relevant observables. For other observables, they lead to significant reduction of scale uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This does not imply that there are no significant contributions coming from constant terms of the 2-loop diagrams, as we discuss further in this section.

  2. As mentioned earlier, whenever we write “W+jets” we really mean the sum: W++jets + W+jets.

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 012005 (2012). arXiv:1108.6308 [hep-ex]

    Article  ADS  Google Scholar 

  2. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 032009 (2012). arXiv:1111.2690 [hep-ex]

    Article  ADS  Google Scholar 

  3. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 092002 (2012). arXiv:1201.1276 [hep-ex]

    Article  ADS  Google Scholar 

  4. G. Aad et al. (ATLAS Collaboration), arXiv:1304.7098 [hep-ex]

  5. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1201, 010 (2012). arXiv:1110.3226 [hep-ex]

    Article  ADS  Google Scholar 

  6. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 722, 238 (2013). arXiv:1301.1646 [hep-ex]

    Article  ADS  Google Scholar 

  7. J.M. Campbell, R.K. Ellis, Phys. Rev. D 60, 113006 (1999). arXiv:hep-ph/9905386

    Article  ADS  Google Scholar 

  8. J. Campbell, R.K. Ellis et al., http://mcfm.fnal.gov

  9. J.M. Campbell, R.K. Ellis, D.L. Rainwater, Phys. Rev. D 68, 094021 (2003). arXiv:hep-ph/0308195

    Article  ADS  Google Scholar 

  10. R.K. Ellis, K. Melnikov, G. Zanderighi, J. High Energy Phys. 0904, 077 (2009). arXiv:0901.4101 [hep-ph]

    Article  ADS  Google Scholar 

  11. R.K. Ellis, K. Melnikov, G. Zanderighi, Phys. Rev. D 80, 094002 (2009). arXiv:0906.1445 [hep-ph]

    Article  ADS  Google Scholar 

  12. C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D.A. Kosower, D. Maître, Phys. Rev. D 78, 036003 (2008). arXiv:0803.4180 [hep-ph]

    Article  ADS  Google Scholar 

  13. C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita, D.A. Kosower et al., Phys. Rev. Lett. 106, 092001 (2011). arXiv:1009.2338 [hep-ph]

    Article  ADS  Google Scholar 

  14. H. Ita, Z. Bern, L.J. Dixon, F. Febres Cordero, D.A. Kosower, D. Maître, Phys. Rev. D 85, 031501 (2012). arXiv:1108.2229 [hep-ph]

    Article  ADS  Google Scholar 

  15. Z. Bern, L.J. Dixon, F.F. Cordero, S. Hoeche, H. Ita, D.A. Kosower, D. Maître, K.J. Ozeren. arXiv:1304.1253 [hep-ph]

  16. T. Gleisberg, S. Hoeche, F. Krauss, A. Schalicke, S. Schumann, J.-C. Winter, J. High Energy Phys. 0402, 056 (2004). arXiv:hep-ph/0311263

    Article  ADS  Google Scholar 

  17. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter, J. High Energy Phys. 0902, 007 (2009). arXiv:0811.4622 [hep-ph]

    Article  ADS  Google Scholar 

  18. F. Krauss, R. Kuhn, G. Soff, J. High Energy Phys. 0202, 044 (2002). arXiv:hep-ph/0109036

    Article  ADS  Google Scholar 

  19. T. Gleisberg, F. Krauss, Eur. Phys. J. C 53, 501 (2008). arXiv:0709.2881 [hep-ph]

    Article  ADS  Google Scholar 

  20. J. Alcaraz Maestre, et al. (SM AND NLO MULTILEG and SM MC Working Groups Collaboration), arXiv:1203.6803 [hep-ph]

  21. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175

    Article  ADS  Google Scholar 

  22. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, J. High Energy Phys. 0101, 010 (2001). arXiv:hep-ph/0011363

    Article  ADS  Google Scholar 

  23. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, J. High Energy Phys. 0307, 001 (2003). arXiv:hep-ph/0206293

    Article  ADS  Google Scholar 

  24. J.R. Andersen, J.M. Smillie, J. High Energy Phys. 1001, 039 (2010). arXiv:0908.2786 [hep-ph]

    Article  ADS  Google Scholar 

  25. J.R. Andersen, J.M. Smillie, Phys. Rev. D 81, 114021 (2010). arXiv:0910.5113 [hep-ph]

    Article  ADS  Google Scholar 

  26. J.R. Andersen, T. Hapola, J.M. Smillie, J. High Energy Phys. 1209, 047 (2012). arXiv:1206.6763 [hep-ph]

    Article  ADS  Google Scholar 

  27. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002). arXiv:hep-ph/0204244

    Article  ADS  Google Scholar 

  28. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1006, 043 (2010). arXiv:1002.2581 [hep-ph]

    Article  ADS  Google Scholar 

  29. S. Hoeche, F. Krauss, M. Schonherr, F. Siegert, Phys. Rev. Lett. 110, 052001 (2013). arXiv:1201.5882 [hep-ph]

    Article  ADS  Google Scholar 

  30. S. Hoeche, F. Krauss, M. Schonherr, F. Siegert, J. High Energy Phys. 1304, 027 (2013). arXiv:1207.5030 [hep-ph]

    Article  ADS  Google Scholar 

  31. K. Hamilton, P. Nason, G. Zanderighi, J. High Energy Phys. 1210, 155 (2012). arXiv:1206.3572 [hep-ph]

    Article  ADS  Google Scholar 

  32. K. Hamilton, P. Nason, C. Oleari, G. Zanderighi, J. High Energy Phys. 1305, 082 (2013). arXiv:1212.4504 [hep-ph]

    Article  ADS  Google Scholar 

  33. R. Frederix, S. Frixione, J. High Energy Phys. 1212, 061 (2012). arXiv:1209.6215 [hep-ph]

    Article  ADS  Google Scholar 

  34. L. Lönnblad, S. Prestel, J. High Energy Phys. 1303, 166 (2013). arXiv:1211.7278 [hep-ph]

    Article  ADS  Google Scholar 

  35. S. Platzer, arXiv:1211.5467 [hep-ph]

  36. M. Rubin, G.P. Salam, S. Sapeta, J. High Energy Phys. 1009, 084 (2010)

    Article  ADS  Google Scholar 

  37. S. Camarda, arXiv:1306.2579 [hep-ex]

  38. F. Campanario, S. Sapeta, Phys. Lett. B 718, 100 (2012). arXiv:1209.4595 [hep-ph]

    Article  ADS  Google Scholar 

  39. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). arXiv:hep-ph/9707323

    Article  ADS  Google Scholar 

  40. M. Wobisch, T. Wengler, arXiv:hep-ph/9907280

  41. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). arXiv:hep-ph/0512210

    Article  ADS  Google Scholar 

  42. M. Cacciari, G.P. Salam, G. Soyez, http://fastjet.fr/

  43. S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, Phys. Lett. B 269, 432 (1991)

    Article  ADS  Google Scholar 

  44. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). arXiv:hep-ph/9305266

    Article  ADS  Google Scholar 

  45. J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos, A. Buckley, J.M. Butterworth, L. Dudko et al., Comput. Phys. Commun. 176, 300 (2007). arXiv:hep-ph/0609017

    Article  ADS  Google Scholar 

  46. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  47. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph]

    Article  ADS  Google Scholar 

  48. S.A. Malik, G. Watt. arXiv:1304.2424 [hep-ph]

  49. Z. Bern et al., arXiv:1310.7439 [hep-ph]. http://inspirehep.net/search?p=find+eprint+1310.7439

Download references

Acknowledgements

We thank Gavin Salam for numerous discussions during this work and for subsequent comments on the manuscript. We are grateful to Ulla Blumenschein and Joey Huston for useful conversations, clarifying a number of experimental issues, and for critical reading of the manuscript. We acknowledge valuable discussions with Stefano Camarda and Nicolas Meric at various stages of this work. We are grateful to Graeme Watt for pointing us to relevant findings concerning ratios of W and Z cross sections. We thank Alberto Guffanti and Pavel Storovoitov for smooth collaboration on the extensions of mcfm, and the mcfm authors for including these new features in the next release. We thank the blackhat+sherpa authors for providing us with the root ntuples. We acknowledge correspondence with Alexander Paramonov concerning experimental details of the W+jets results from ATLAS. D.M.’s work was supported by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Sapeta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maître, D., Sapeta, S. Simulated NNLO for high-p T observables in vector boson + jets production at the LHC. Eur. Phys. J. C 73, 2663 (2013). https://doi.org/10.1140/epjc/s10052-013-2663-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2663-8

Keywords

Navigation