Gravitational waves in a spatially closed de Sitter spacetime

  • Amir H. AbbassiEmail author
  • J. Khodagholizadeh
  • Amir M. Abbassi
Regular Article - Theoretical Physics


Perturbation of gravitational fields may be decomposed into scalar, vector and tensor components. In this paper we concern with the evolution of tensor mode perturbations in a spatially closed de Sitter background of Robertson–Walker form. It may be thought as gravitational waves in a classical description. The chosen background has the advantage of to be maximally extended and symmetric. Spatially flat models commonly emerge from inflationary scenarios are not completely extended. We first derive the general weak field equations. Then the form of the field equations in two special cases, planar and spherical waves, are obtained and their solutions are presented. The radiation field from an isolated source is calculated. We conclude with discussing the significance of the results and their implications.


Field Equation Gravitational Wave Spherical Wave Affine Connection Conformal Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Weinberg, Cosmology (Oxford Univ. Press, Oxford, 2008) zbMATHGoogle Scholar
  2. 2.
    M. Maggiore, Gravitational Waves, vol. 1: Theory and Experiment (Oxford Univ. Press, Oxford, 2007) CrossRefGoogle Scholar
  3. 3.
    D.W. Olson, Phys. Rev. D 14, 327 (1976) ADSCrossRefGoogle Scholar
  4. 4.
    J. Bernabeu, D. Espriu, D. Puigdomenech, Phys. Rev. D 84, 063323 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    D. Bini, G. Esposito, A. Geralico, Gen. Relativ. Gravit. 44, 467 (2012). arXiv:1103.3204 [gr-qc] MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    J.M. Bardeen, Phys. Rev. D 22, 1882 (1980) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    H. Kodama, M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984) ADSCrossRefGoogle Scholar
  8. 8.
    E. Komatu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    G. Hinshaw et al., arXiv:1212.5226 [astro-ph]
  10. 10.
    P.A.R. Ade et al. (Planck Collaboration), arXiv:1303.5086 [astro-ph.CO]
  11. 11.
    A. Higuchi, Class. Quantum Gravity 8, 2005 (1991) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    B. Allen, Phys. Rev. D 37, 2078 (1988) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    L.F. Abbott, R.K. Schaefer, Astrophys. J. 308, 546–562 (1986) ADSCrossRefGoogle Scholar
  14. 14.
    M. Zaldarriaga, U. Seljah, E. Bertschineger, Astrophys. J. 494, 491–502 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972) Google Scholar
  16. 16.
    J.P. Uzan, V. Krichner, G.F.R. Ellis, Mon. Not. R. Astron. Soc. 349, L65 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Amir H. Abbassi
    • 1
    Email author
  • J. Khodagholizadeh
    • 1
  • Amir M. Abbassi
    • 2
  1. 1.Department of Physics, School of SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of PhysicsUniversity of TehranTehranIran

Personalised recommendations