Skip to main content
Log in

Correlated event excesses in LHC SUSY searches at 7 & 8 TeV: new physics or conspiring noise?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We examine the ATLAS and CMS 7 & 8 TeV multijet supersymmetry (SUSY) searches requiring the incidence of a single lepton in the framework of the supersymmetric grand unified model No-Scale Flipped SU(5) with extra vector-like flippon multiplets derived from F-Theory, or \(\mathcal{F}\mbox{--} \mathit{SU}(5)\) for short. Investigated are five multijet + lepton SUSY searches: 4.7 fb−1 ATLAS 7 TeV gluino and light stop searches, as well as 13 fb−1 ATLAS and 9.7 fb−1 CMS 8 TeV light stop searches. Most significantly, all five leptonic SUSY searches represent statistically independent data samples. Findings show that all five orthogonal sets of leptonic LHC observations give a lower bound to the gaugino mass scale at M 1/2≥680 GeV, with all the current best fits correlating within a narrow region. Furthermore, eight statistically independent LHC SUSY search regions (leptonic + all-hadronic) accessible to the No-Scale \(\mathcal{F}\mbox{--} \mathit{SU}(5)\) model space intersect with all the currently operating beyond the Standard Model experiments within the range of M 1/2=680–850 GeV, with the upper bound established by the lower experimental limit of the anomalous magnetic moment (g μ −2)/2 of the muon. We emphasize that this region of the \(\mathcal{F}\mbox{--} \mathit{SU}(5)\) model space may not be fully probed by leptonic SUSY searches at the LHC until the 13 TeV LHC energizes in 2015. Additionally, we describe an efficient technique for the effective statistical disentanglement of searches sensitive to mutually overlapping event spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The golden point of no-scale and no-parameter \(\mathcal {F}\mbox{--} \mathit{SU}(5)\). Phys. Rev. D 83, 056015 (2011). 1007.5100

    ADS  Google Scholar 

  2. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The golden strip of correlated top quark, gaugino, and vectorlike mass in no-scale, no-parameter F-SU(5). Phys. Lett. B 699, 164 (2011). 1009.2981

    Article  ADS  Google Scholar 

  3. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Super no-scale \(\mathcal{F}\mbox{--} \mathit{SU}(5)\): resolving the gauge hierarchy problem by dynamic determination of M 1/2 and tanβ. Phys. Lett. B 703, 469 (2011). 1010.4550

    Article  ADS  Google Scholar 

  4. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Blueprints of the no-scale multiverse at the LHC. Phys. Rev. D 84, 056016 (2011). 1101.2197

    ADS  Google Scholar 

  5. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Ultra high jet signals from stringy no-scale supergravity. 1103.2362 (2011)

  6. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The ultrahigh jet multiplicity signal of stringy no-scale \(\mathcal{F}\mbox{--} \mathit{SU}(5)\) at the \(\sqrt{s}= 7~\mbox{TeV}\) LHC. Phys. Rev. D 84, 076003 (2011). 1103.4160

    ADS  Google Scholar 

  7. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The unification of dynamical determination and bare minimal phenomenological constraints in no-scale F–SU(5). Phys. Rev. D 85, 056007 (2012). 1105.3988

    ADS  Google Scholar 

  8. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The race for supersymmetric dark matter at XENON100 and the LHC: stringy correlations from no-scale \(\mathcal{F}\mbox{--} \mathit{SU}(5)\). J. High Energy Phys. 1212, 017 (2012). 1106.1165

    Article  ADS  Google Scholar 

  9. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, A two-tiered correlation of dark matter with missing transverse energy: reconstructing the lightest supersymmetric particle mass at the LHC. J. High Energy Phys. 02, 129 (2012). 1107.2375

    Article  ADS  Google Scholar 

  10. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Prospects for discovery of supersymmetric no-scale F–SU(5) at the once and future LHC. Nucl. Phys. B 859, 96 (2012). 1107.3825

    Article  ADS  Google Scholar 

  11. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Has SUSY gone undetected in 9-jet events? A ten-fold enhancement in the LHC signal efficiency. 1108.5169 (2011)

  12. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Natural predictions for the Higgs boson mass and supersymmetric contributions to rare processes. Phys. Lett. B 708, 93 (2012). 1109.2110

    Article  ADS  Google Scholar 

  13. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, The F-landscape: dynamically determining the multiverse. Int. J. Mod. Phys. A 27, 1250121 (2012). 1111.0236

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Profumo di SUSY: suggestive correlations in the ATLAS and CMS high jet multiplicity data. 1111.4204 (2011)

  15. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, A Higgs mass shift to 125 GeV and a multi-jet supersymmetry signal: miracle of the flippons at the \(\sqrt{s} = 7~\mbox{TeV}\) LHC. Phys. Lett. B 710, 207 (2012). 1112.3024

    Article  ADS  Google Scholar 

  16. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, A multi-axis best fit to the collider supersymmetry search: the aroma of stops and gluinos at the \(\sqrt{s} = 7~\mbox{TeV}\) LHC. 1203.1918 (2012)

  17. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Chanel N o5(fb−1): the sweet fragrance of SUSY. 1205.3052 (2012)

  18. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Non-trivial supersymmetry correlations between ATLAS and CMS observations. 1206.0293 (2012)

  19. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Correlating LHCb \(B_{s}^{0} \to\mu^{+} \mu^{-}\) results with the ATLAS-CMS multijet supersymmetry search. Europhys. Lett. 100, 21001 (2012). 1206.2633

    Article  ADS  Google Scholar 

  20. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Testing no-scale \(\mathcal{F}\mbox{--} \mathit{SU}(5)\): a 125 GeV Higgs boson and SUSY at the 8 TeV LHC. Phys. Lett. B 718, 70 (2012). 1207.1051

    Article  ADS  Google Scholar 

  21. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, A 125.5 GeV Higgs boson in \(\mathcal{F}\mbox{--} \mathit{SU}(5)\): imminently observable proton decay, a 130 GeV gamma-ray line, and SUSY multijets and light stops at the LHC8. Eur. Phys. J. C 72, 2246 (2012). 1208.1999

    Article  ADS  Google Scholar 

  22. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Primordial synthesis: F–SU(5) SUSY multijets, 145–150 GeV LSP, proton & rare decays, 125 GeV Higgs boson, and WMAP7. 1210.3011 (2012)

  23. Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 4.7 \(\rm{fb}^{-1}\) of \(\sqrt{s} = 7~\mbox{TeV}\) proton–proton collision data. ATLAS-CONF-2012-ATLAS-CONF-033 (2012). 1208.0949. http://cdsweb.cern.ch

  24. G. Aad et al. (ATLAS Collaboration), Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of \(\sqrt{s} = 7~\mbox{TeV}\) proton–proton collisions. J. High Energy Phys. 1207, 167 (2012). 1206.1760

    Article  ADS  Google Scholar 

  25. Search for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 5.8 fb−1 of \(\sqrt{s} = 8~\mbox{TeV}\) proton–proton collisions. ATLAS-CONF-2012-ATLAS-CONF-103 (2012). http://cdsweb.cern.ch

  26. Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum at \(\sqrt{s} = 8~\mbox{TeV}\). ATLAS-CONF-2012-ATLAS-CONF-109 (2012). http://cdsweb.cern.ch

  27. Search for direct top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} = 7~\mbox{TeV}\) pp collisions using 4.7 fb−1 of ATLAS data. ATLAS-CONF-2012-ATLAS-CONF-073 (2012). http://cdsweb.cern.ch

  28. Search for supersymmetry at \(\sqrt{s} = 7~\mbox{TeV}\) in final states with large jet multiplicity, missing transverse momentum and one isolated lepton with the ATLAS detector. ATLAS-CONF-2012-ATLAS-CONF-140 (2012). http://cdsweb.cern.ch

  29. Search for direct top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} = 8~\mbox{TeV}\) pp collisions using 13.0 fb−1 of ATLAS data. ATLAS-CONF-2012-ATLAS-CONF-166 (2012). http://cdsweb.cern.ch

  30. G. Aad et al. (ATLAS Collaboration), Multi-channel search for squarks and gluinos in \(\sqrt{s}=7~\mbox{TeV}\) pp collisions with the ATLAS detector. 1212.6149 (2012)

  31. Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at \(\sqrt{s} = 8~\mbox{TeV}\). CMS-PAS-SUS-12-CMS-PAS-SUS-023 (2012). http://cdsweb.cern.ch

  32. T. Stelzer, W.F. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81, 357 (1994). hep-ph/9401258

    Article  ADS  Google Scholar 

  33. J. Alwall et al., MadGraph/MadEvent collider event simulation suite (2011). http://madgraph.hep.uiuc.edu/

  34. J. Alwall et al., MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 09, 028 (2007). 0706.2334

    Article  ADS  Google Scholar 

  35. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). hep-ph/0603175

    Article  ADS  Google Scholar 

  36. W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Squark and gluino production at hadron colliders. Nucl. Phys. B 492, 51 (1997). hep-ph/9610490

    ADS  Google Scholar 

  37. W. Beenakker, M. Kramer, T. Plehn, M. Spira, P. Zerwas, Stop production at hadron colliders. Nucl. Phys. B 515, 3 (1998). hep-ph/9710451

    Article  ADS  Google Scholar 

  38. W. Beenakker, R. Hopker, M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD. hep-ph/9611232 (1996)

  39. W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen et al., Squark and gluino hadroproduction. Int. J. Mod. Phys. A 26, 2637 (2011). 1105.1110

    Article  ADS  Google Scholar 

  40. S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry in final states with a single lepton, b-quark jets, and missing transverse energy in proton–proton collisions at \(\sqrt{s}=7~\mbox{TeV}\). 1211.3143 (2012)

  41. S.M. Barr, A new symmetry breaking pattern for SO(10) and proton decay. Phys. Lett. B 112, 219 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.P. Derendinger, J.E. Kim, D.V. Nanopoulos, Anti-SU(5). Phys. Lett. B 139, 170 (1984)

    Article  ADS  Google Scholar 

  43. I. Antoniadis, J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, Supersymmetric flipped SU(5) revitalized. Phys. Lett. B 194, 231 (1987)

    Article  ADS  Google Scholar 

  44. J. Jiang, T. Li, D.V. Nanopoulos, Testable flipped SU(5)×U(1) X models. Nucl. Phys. B 772, 49 (2007). hep-ph/0610054

    Article  ADS  MATH  Google Scholar 

  45. J. Jiang, T. Li, D.V. Nanopoulos, D. Xie, F–SU(5). Phys. Lett. B 677, 322 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Jiang, T. Li, D.V. Nanopoulos, D. Xie, Flipped SU(5)×U(1) X models from F-theory. Nucl. Phys. B 830, 195 (2010). 0905.3394

    Article  MathSciNet  ADS  Google Scholar 

  47. T. Li, D.V. Nanopoulos, J.W. Walker, Elements of fast proton decay. Nucl. Phys. B 846, 43 (2011). 1003.2570

    Article  ADS  MATH  Google Scholar 

  48. T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Dark matter, proton decay and other phenomenological constraints in \(\mathcal{F}\mbox{--} \mathit{SU}(5)\). Nucl. Phys. B 848, 314 (2011). 1003.4186

    Article  ADS  MATH  Google Scholar 

  49. E. Cremmer, S. Ferrara, C. Kounnas, D.V. Nanopoulos, Naturally vanishing cosmological constant in N=1 supergravity. Phys. Lett. B 133, 61 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  50. J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos, K. Tamvakis, No-scale supersymmetric standard model. Phys. Lett. B 134, 429 (1984)

    Article  ADS  Google Scholar 

  51. J.R. Ellis, C. Kounnas, D.V. Nanopoulos, Phenomenological SU(1,1) supergravity. Nucl. Phys. B 241, 406 (1984)

    Article  ADS  Google Scholar 

  52. J.R. Ellis, C. Kounnas, D.V. Nanopoulos, No scale supersymmetric guts. Nucl. Phys. B 247, 373 (1984)

    Article  ADS  Google Scholar 

  53. A.B. Lahanas, D.V. Nanopoulos, The road to no scale supergravity. Phys. Rep. 145, 1 (1987)

    Article  ADS  Google Scholar 

  54. J.R. Ellis, D.V. Nanopoulos, K.A. Olive, Lower limits on soft supersymmetry breaking scalar masses. Phys. Lett. B 525, 308 (2002)

    Article  ADS  Google Scholar 

  55. J. Ellis, A. Mustafayev, K.A. Olive, Resurrecting no-scale supergravity phenomenology. Eur. Phys. J. C 69, 219 (2010). 1004.5399

    Article  ADS  Google Scholar 

  56. G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). 1207.7214

    Article  ADS  Google Scholar 

  57. S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). 1207.7235

    Article  ADS  Google Scholar 

  58. T. Aaltonen et al. (CDF Collaboration, D0 Collaboration), Evidence for a particle produced in association with weak bosons and decaying to a bottom–antibottom quark pair in Higgs boson searches at the Tevatron. Phys. Rev. Lett. 109, 071804 (2012). 1207.6436

    Article  ADS  Google Scholar 

  59. E. Komatsu, et al. (WMAP), Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2010). 1001.4538

    Article  ADS  Google Scholar 

  60. The CDF and D0 Collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.6 fb−1 of data. 1007.3178 (2010)

  61. R. Aaij et al. (LHCb collaboration), Measurement of the \(B^{0}_{s} \to\mu^{+} \mu^{-}\) branching fraction and search for B 0μ + μ decays at the LHCb experiment. 1307.5024 (2013)

  62. S. Chatrchyan et al. (CMS Collaboration), Measurement of the B s μμ branching fraction and search for B 0μμ with the CMS experiment. 1307.5025 (2013)

  63. J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto et al., Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 709, 222 (2012). 1112.3022

    Article  ADS  Google Scholar 

  64. Y. Huo, T. Li, D.V. Nanopoulos, C. Tong, The lightest CP-even Higgs boson mass in the testable flipped SU(5)×U(1) X models from F-theory. Phys. Rev. D 85, 116002 (2012). 1109.2329

    ADS  Google Scholar 

  65. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ). Eur. Phys. J. C 71, 1515 (2011). 1010.4180

    Article  ADS  Google Scholar 

  66. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, (g−2) μ and \(\alpha(M_{Z}^{2})\) re-evaluated using new precise data. J. Phys. G 38, 085003 (2011). 1105.3149

    Article  ADS  Google Scholar 

  67. T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Complete tenth-order QED contribution to the muon g-2. Phys. Rev. Lett. 109, 111808 (2012). 1205.5370

    Article  ADS  Google Scholar 

  68. R.P. Feynman, The Feynman Lectures on Physics, vol. III (1964)

    Google Scholar 

  69. G. Belanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees et al., Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun. 182, 842 (2011). 1004.1092

    Article  ADS  MATH  Google Scholar 

  70. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426 (2007). hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  71. J.W. Walker, CutLHCO: a consumer-level tool for implementing generic collider data selection cuts in the search for new physics. 1207.3383 (2012)

  72. T. Bringmann, X. Huang, A. Ibarra, S. Vogl, C. Weniger, Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation. J. Cosmol. Astropart. Phys. 1207, 054 (2012). 1203.1312

    Article  ADS  Google Scholar 

  73. C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope. J. Cosmol. Astropart. Phys. 1208, 007 (2012). 1204.2797

    Article  ADS  Google Scholar 

  74. A. Albert, Search for gamma-ray spectral lines in the Milky Way diffuse with the Fermi large area telescope, in The FERMI Symposium (2012)

    Google Scholar 

  75. S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry in hadronic final states using MT2 in pp collisions at \(\sqrt{s} = 7~\mbox{TeV}\). J. High Energy Phys. 1210, 018 (2012). 1207.1798

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the DOE grant DE-FG03-95-Er-40917 (TL and DVN), by the Natural Science Foundation of China under grant numbers 10821504, 11075194, 11135003, and 11275246 (TL), and by the Mitchell-Heep Chair in High Energy Physics (JAM). We also thank Sam Houston State University for providing high performance computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Maxin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Maxin, J.A., Nanopoulos, D.V. et al. Correlated event excesses in LHC SUSY searches at 7 & 8 TeV: new physics or conspiring noise?. Eur. Phys. J. C 73, 2556 (2013). https://doi.org/10.1140/epjc/s10052-013-2556-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2556-x

Keywords

Navigation