Abstract
A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known \(m_{h}^{\max}\) scenario, and a modified scenario (\(m_{h}^{\mathrm{mod}}\)), where the light \(\mathcal{CP}\)-even Higgs boson can be interpreted as the LHC signal in large parts of the M A –tanβ plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest \(\mathcal{CP}\)-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h→γγ at large tanβ. We also suggest a τ-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the μ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non-SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H→hh. Finally, in addition to all the other scenarios where the lightest \(\mathcal{CP}\)-even Higgs is interpreted as the LHC signal, we propose a low-M H scenario, where instead the heavy \(\mathcal{CP}\)-even Higgs boson corresponds to the new state around 125.5 GeV.











Notes
The evaluation in FeynHiggs that we shall use in our numerical computations contains the full one-loop contributions to Δ b as given in Ref. [85]. The leading QCD two-loop corrections to Δ b are also available [86, 87]; they stabilize the scale dependence of Δ b substantially. Corrections in the MSSM with non-minimal flavor structure were recently published in Ref. [88].
For calculations of the Higgs branching ratios, there also exist other codes like HDECAY [93]. The branching ratio predictions for the different scenarios are generally in good agreement between the different codes, and we use FeynHiggs for simplicity.
HiggsBounds provides a compilation of cross section limits obtained from Higgs searches at LEP, the Tevatron and the LHC. For testing whether a particular parameter point of a considered model is excluded, first the search channel with the highest expected sensitivity for an exclusion is determined, and then the observed limit is confronted with the model predictions for this single channel only, see Ref. [94–96] for further details.
The light red color in Fig. 4 has a different meaning.
The branching ratios into charginos and neutralinos turn out to be very similar for the heavy \(\mathcal{CP}\)-even Higgs boson, H, and the \(\mathcal{CP}\)-odd Higgs boson, A, in this region of parameter space.
The values of μ, M 1 and M 2 could be adjusted to slightly larger values if the currently proposed values were excluded by future experiments. For instance, the choice M 1=350 GeV, M 2=μ=400 GeV leads to a SUSY spectrum that is very difficult to test at the LHC. In general, for a given value of tanβ and M A , slightly larger values of μ and M 1,2 would lead to a small decrease of the value of M h and therefore to a small shift of the green areas to larger values of tanβ.
Large values of A t,b,τ and μ are in principle constrained by the requirement that no charge and color breaking minima should appear in the potential [136–138], or at least that there is a sufficiently long-lived meta-stable vacuum. However, a detailed analysis of this issue is beyond the scope of this paper, and we leave it for a future analysis.
The remark made in the previous section about the constraints from charge and color breaking minima in the scalar potential applies also here.
References
G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]
S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]
ATLAS Collaboration, ATLAS-CONF-2013-012
CMS Collaboration, CMS-PAS-HIG-2013-001
S.L. Glashow, Nucl. Phys. B 22, 579 (1961)
S. Weinberg, Phys. Rev. Lett. 19, 19 (1967)
A. Salam, in Proceedings of the 8th Nobel Symposium, Stockholm, ed. by N. Svartholm (1968)
H. Nilles, Phys. Rep. 110, 1 (1984)
H. Haber, G. Kane, Phys. Rep. 117, 75 (1985)
R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988)
A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173
S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659 (2006). arXiv:hep-ph/0407244
S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). arXiv:hep-ph/0412214
G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020
S. Heinemeyer, O. Stål, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]
M. Carena, S. Gori, N. Shah, C.E.M. Wagner, J. High Energy Phys. 1203, 014 (2012). arXiv:1112.3336 [hep-ph]
M. Carena, S. Gori, N. Shah, C.E.M. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 175 (2012). arXiv:1205.5842 [hep-ph]
M. Carena, I. Low, C.E.M. Wagner, J. High Energy Phys. 1208, 060 (2012). arXiv:1206.1082 [hep-ph]
M. Carena, S. Gori, I. Low, N. Shah, C.E.M. Wagner, J. High Energy Phys. (to appear). arXiv:1211.6136 [hep-ph]
R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stål, G. Weiglein, L. Zeune, Eur. Phys. J. C 72, 2171 (2012). arXiv:1207.1096 [hep-ph]
P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, L. Zeune, arXiv:1211.1955 [hep-ph]
L. Hall, D. Pinner, J. Ruderman, J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703 [hep-ph]
H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]
P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph]
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. High Energy Phys. 1209, 107 (2012). arXiv:1207.1348 [hep-ph]
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, Phys. Lett. B 720, 153 (2013). arXiv:1211.4004 [hep-ph]
M. Cahill-Rowley, J. Hewett, A. Ismail, T. Rizzo, Phys. Rev. D 86, 075015 (2012). arXiv:1206.5800 [hep-ph]
S. Akula, P. Nath, G. Peim, Phys. Lett. B 717, 188 (2012). arXiv:1207.1839 [hep-ph]
S. Antusch, L. Calibbi, V. Maurer, M. Monaco, M. Spinrath, J. High Energy Phys. 1301, 187 (2013). arXiv:1207.7236 [hep-ph]
U. Haisch, F. Mahmoudi, J. High Energy Phys. 1301, 061 (2013). arXiv:1210.7806 [hep-ph]
M. Cabrera, J. Casas, R.R. de Austri, arXiv:1212.4821 [hep-ph]
R. Gupta, M. Montull, F. Riva, J. High Energy Phys. 1304, 132 (2013). arXiv:1212.5240 [hep-ph]
A. Chakraborty, B. Das, J. Diaz-Cruz, D. Ghosh, S. Moretti, P. Poulose, arXiv:1301.2745 [hep-ph]
A. Bottino, N. Fornengo, S. Scopel, Phys. Rev. D 85, 095013 (2012). arXiv:1112.5666 [hep-ph]
M. Drees, Phys. Rev. D 86, 115018 (2012). arXiv:1210.6507 [hep-ph]
R. Barate et al. (LEP Working Group for Higgs boson searches and ALEPH DELPHI and L3 and OPAL Collaborations), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033
B. Petersen (ATLAS Collaboration), talk given at HCP2012, see: http://kds.kek.jp/materialDisplay.py?contribId=46&sessionId=20&materialId=slides&confId=9237
R. Gray (CMS Collaboration), talk given at HCP2012, see: http://kds.kek.jp/materialDisplay.py?contribId=48&sessionId=20&materialId=slides&confId=9237
S. Schael et al., (ALEPH, DELPHI, L3, and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042
M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, arXiv:hep-ph/9912223
M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601 (2003). arXiv:hep-ph/0202167
S. Heinemeyer, W. Hollik, G. Weiglein, J. High Energy Phys. 0006, 009 (2000). arXiv:hep-ph/9909540
M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 45, 797 (2006). arXiv:hep-ph/0511023
M. Carena, P. Chankowski, S. Pokorski, C. Wagner, Phys. Lett. B 441, 205 (1998). arXiv:hep-ph/9805349
S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472
J. Espinosa, I. Navarro, Nucl. Phys. B 615, 82 (2001). arXiv:hep-ph/0104047
M. Carena, H. Haber, S. Heinemeyer, W. Hollik, C. Wagner, G. Weiglein, Nucl. Phys. B 580, 29 (2000). arXiv:hep-ph/0001002
S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320
T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009); see http://www.feynhiggs.de
M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326
J. Lee, A. Pilaftsis, M. Carena, S. Choi, M. Drees, J. Ellis, C. Wagner, Comput. Phys. Commun. 156, 283 (2004). arXiv:hep-ph/0307377
J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Comput. Phys. Commun. 180, 312 (2009). arXiv:0712.2360 [hep-ph]
J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, arXiv:1208.2212 [hep-ph]
J. Casas, J. Espinosa, M. Quirós, A. Riotto, Nucl. Phys. B 3, 466 (1995)
J. Casas, J. Espinosa, M. Quirós, A. Riotto, Nucl. Phys. B 439, 466 (1995). arXiv:hep-ph/9407389
M. Carena, J. Espinosa, M. Quirós, C. Wagner, Phys. Lett. B 355, 209 (1995). arXiv:hep-ph/9504316
M. Carena, M. Quirós, C. Wagner, Nucl. Phys. B 461, 407 (1996). arXiv:hep-ph/9508343
S. Martin, Phys. Rev. D 65, 116003 (2002). arXiv:hep-ph/0111209
S. Martin, Phys. Rev. D 66, 096001 (2002). arXiv:hep-ph/0206136
S. Martin, Phys. Rev. D 67, 095012 (2003). arXiv:hep-ph/0211366
S. Martin, Phys. Rev. D 68, 075002 (2003). arXiv:hep-ph/0307101
S. Martin, Phys. Rev. D 70, 016005 (2004). arXiv:hep-ph/0312092
S. Martin, Phys. Rev. D 71, 016012 (2005). arXiv:hep-ph/0405022
S. Martin, Phys. Rev. D 71, 116004 (2005). arXiv:hep-ph/0502168
S. Martin, D. Robertson, Comput. Phys. Commun. 174, 133 (2006). arXiv:hep-ph/0501132
S. Martin, Phys. Rev. D 75, 055005 (2007). arXiv:hep-ph/0701051
R. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Phys. Rev. Lett. 100, 191602 (2008). Phys. Rev. Lett. 101, 039901 (2008). arXiv:0803.0672 [hep-ph]
R. Harlander, P. Kant, L. Mihaila, M. Steinhauser, J. High Energy Phys. 1008, 104 (2010). arXiv:1005.5709 [hep-ph]
S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 455, 179 (1999). arXiv:hep-ph/9903404
B. Allanach, A. Djouadi, J. Kneur, W. Porod, P. Slavich, J. High Energy Phys. 0409, 044 (2004). arXiv:hep-ph/0406166
K. Williams, H. Rzehak, G. Weiglein, Eur. Phys. J. C 71, 1669 (2011). arXiv:1103.1335 [hep-ph]
R. Hempfling, Phys. Rev. D 49, 6168 (1994)
L. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309
M. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253
M. Carena, D. Garcia, U. Nierste, C. Wagner, Nucl. Phys. B 577, 577 (2000). arXiv:hep-ph/9912516
H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, Y. Yamada, Phys. Rev. D 62, 055006 (2000). arXiv:hep-ph/9912463
J. Guasch, P. Häfliger, M. Spira, Phys. Rev. D 68, 115001 (2003). arXiv:hep-ph/0305101
M. Carena, S. Mrenna, C. Wagner, Phys. Rev. D 60, 075010 (1999). arXiv:hep-ph/9808312
M. Carena, S. Mrenna, C. Wagner, Phys. Rev. D 62, 055008 (2000). arXiv:hep-ph/9907422
A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 643, 79 (2002). arXiv:hep-ph/0206101
G. Degrassi, A. Dedes, P. Slavich, Nucl. Phys. B 672, 144 (2003). arXiv:hep-ph/0305127
S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114
S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, arXiv:hep-ph/0506254
L. Hofer, U. Nierste, D. Scherer, J. High Energy Phys. 0910, 081 (2009). arXiv:0907.5408 [hep-ph]
D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087 [hep-ph]
D. Noth, M. Spira, J. High Energy Phys. 1106, 084 (2011). arXiv:1001.1935 [hep-ph]
A. Crivellin, C. Greub, Phys. Rev. D 87, 015013 (2013). arXiv:1210.7453 [hep-ph]
S. Gennai et al., Eur. Phys. J. C 52, 383 (2007). arXiv:0704.0619 [hep-ph]
M. Hashemi et al., arXiv:0804.1228 [hep-ph]
G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 35, 1 (2004). arXiv:hep-ex/0401026
Tevatron Electroweak Working Group, the CDF and DØ Collaborations, arXiv:1107.5255 [hep-ex]
A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). hep-ph/9704448
P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. 181, 138 (2010). arXiv:0811.4169 [hep-ph]
P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. 182, 2605 (2011). arXiv:1102.1898 [hep-ph]
P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. Williams, arXiv:1301.2345 [hep-ph]
P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. Williams, Manual for HiggsBounds 4.0.0. http://higgsbounds.hepforge.org
CMS Collaboration, CMS-PAS-HIG-12-050
G. Aad et al. (ATLAS Collaboration), arXiv:1211.6956 [hep-ex]
G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1206, 039 (2012). arXiv:1204.2760 [hep-ex]
S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1207, 143 (2012). arXiv:1205.5736 [hep-ex]
CMS Collaboration, CMS-PAS-HIG-12-045
K. Williams, G. Weiglein, Phys. Lett. B 660, 217 (2008). arXiv:0710.5320 [hep-ph]
M. Bisset, J. Li, N. Kersting, F. Moortgat, S. Moretti, J. High Energy Phys. 0908, 037 (2009). arXiv:0709.1029 [hep-ph]
M. Bisset, F. Moortgat, S. Moretti, Eur. Phys. J. C 30, 419 (2003). arXiv:hep-ph/0303093
F. Moortgat, S. Abdullin, D. Denegri, arXiv:hep-ph/0112046
W. Altmannshofer, M. Carena, N. Shah, F. Yu, arXiv:1211.1976 [hep-ph]
S. Chatrchyan et al. (CMS Collaboration), arXiv:1302.2892 [hep-ex]
M. Carena, S. Gori, A. Juste, A. Menon, C.E.M. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 091 (2012). arXiv:1203.1041 [hep-ph]
A. Djouadi, Phys. Lett. B 435, 101 (1998). arXiv:hep-ph/9806315
J. Ellis, M. Gaillard, D. Nanopoulos, Nucl. Phys. B 106, 292 (1976)
M. Shifman, A. Vainshtein, M. Voloshin, V. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979) [Yad. Fiz. 30, 1368 (1979)]
K. Blum, R. D’Agnolo, J. Fan, J. High Energy Phys. 1301, 057 (2013). arXiv:1206.5303 [hep-ph]
M. Buckley, D. Hooper, Phys. Rev. D 86, 075008 (2012). arXiv:1207.1445 [hep-ph]
J. Espinosa, C. Grojean, V. Sanz, M. Trott, J. High Energy Phys. 1212, 077 (2012). arXiv:1207.7355 [hep-ph]
G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211802 (2012). arXiv:1208.1447 [hep-ex]
G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211803 (2012). arXiv:1208.2590 [hep-ex]
G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1211, 094 (2012). arXiv:1209.4186 [hep-ex]
G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2237 (2012). arXiv:1208.4305 [hep-ex]
G. Aad et al., arXiv:1209.2102 [hep-ex]
G. Aad et al., ATLAS-CONF-2012-166
G. Aad et al., ATLAS-CONF-2012-167
G. Aad et al., ATLAS-CONF-2013-001
G. Aad et al. CMS Collaboration, PAS-SUS-12-023
G. Aad et al., PAS-SUS-12-028
G. Aad et al., PAS-SUS-12-029
G. Aad et al., PAS-SUS-11-030
T. Aaltonen et al. (CDF Collaboration), J. High Energy Phys. 1210, 158 (2012). arXiv:1203.4171 [hep-ex]
V. Abazov et al. (DØ Collaboration), Phys. Lett. B 665, 1 (2008). arXiv:0803.2263 [hep-ex]
J.-J. Cao, Z.-X. Heng, J. Yang, Y.-M. Zhang, J.-Y. Zhu, J. High Energy Phys. 1203, 086 (2012). arXiv:1202.5821 [hep-ph]
K. Hagiwara, J. Lee, J. Nakamura, J. High Energy Phys. 1210, 002 (2012). arXiv:1207.0802 [hep-ph]
G. Giudice, P. Paradisi, A. Strumia, J. High Energy Phys. 1210, 186 (2012). arXiv:1207.6393 [hep-ph]
M. Ajaib, I. Gogoladze, Q. Shafi, Phys. Rev. D 86, 095028 (2012). arXiv:1207.7068 [hep-ph]
A. Dabelstein, Nucl. Phys. B 456, 25 (1995). arXiv:hep-ph/9503443
S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139 (2000). arXiv:hep-ph/0003022
J. Casas, A. Lleyda, C. Muñoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294
A. Kusenko, P. Langacker, G. Segre, Phys. Rev. D 54, 5824 (1996). arXiv:hep-ph/9602414
J. Hisano, S. Sugiyama, Phys. Lett. B 696, 92 (2011) [Erratum-ibid., B 719, 472 (2013)]. arXiv:1011.0260 [hep-ph]
W. Hollik, Priv. communication
Acknowledgements
We thank C. Acereda Ortiz for discussions on the decay rates of H→hh and Y. Linke for discussions on the \(m_{h}^{\mathrm{mod}}\) and low-M H scenarios. We thank P. Bechtle and T. Stefaniak for discussions on HiggsBounds. This work has been supported by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings, and the Early Universe”. The work of S.H. was partially supported by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. The work of O.S. is supported by the Swedish Research Council (VR) through the Oskar Klein Centre. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.
Author information
Authors and Affiliations
Corresponding author
Appendix: Summary of parameter values
Appendix: Summary of parameter values
Rights and permissions
About this article
Cite this article
Carena, M., Heinemeyer, S., Stål, O. et al. MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C 73, 2552 (2013). https://doi.org/10.1140/epjc/s10052-013-2552-1
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjc/s10052-013-2552-1