Skip to main content
Log in

MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle

The European Physical Journal C Aims and scope Submit manuscript

Abstract

A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known \(m_{h}^{\max}\) scenario, and a modified scenario (\(m_{h}^{\mathrm{mod}}\)), where the light \(\mathcal{CP}\)-even Higgs boson can be interpreted as the LHC signal in large parts of the M A –tanβ plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest \(\mathcal{CP}\)-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of hγγ at large tanβ. We also suggest a τ-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the μ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non-SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form Hhh. Finally, in addition to all the other scenarios where the lightest \(\mathcal{CP}\)-even Higgs is interpreted as the LHC signal, we propose a low-M H scenario, where instead the heavy \(\mathcal{CP}\)-even Higgs boson corresponds to the new state around 125.5 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. The evaluation in FeynHiggs that we shall use in our numerical computations contains the full one-loop contributions to Δ b as given in Ref. [85]. The leading QCD two-loop corrections to Δ b are also available [86, 87]; they stabilize the scale dependence of Δ b substantially. Corrections in the MSSM with non-minimal flavor structure were recently published in Ref. [88].

  2. For calculations of the Higgs branching ratios, there also exist other codes like HDECAY [93]. The branching ratio predictions for the different scenarios are generally in good agreement between the different codes, and we use FeynHiggs for simplicity.

  3. HiggsBounds provides a compilation of cross section limits obtained from Higgs searches at LEP, the Tevatron and the LHC. For testing whether a particular parameter point of a considered model is excluded, first the search channel with the highest expected sensitivity for an exclusion is determined, and then the observed limit is confronted with the model predictions for this single channel only, see Ref. [9496] for further details.

  4. The light red color in Fig. 4 has a different meaning.

  5. The branching ratios into charginos and neutralinos turn out to be very similar for the heavy \(\mathcal{CP}\)-even Higgs boson, H, and the \(\mathcal{CP}\)-odd Higgs boson, A, in this region of parameter space.

  6. We have verified our implementation of this limit against the results from CMS [108], which are given for the (original) \(m_{h}^{\max}\) scenario with μ=±200 GeV. The “zig-zag”-type variation of the bounds originates from the original bounds in Ref. [108].

  7. The values of μ, M 1 and M 2 could be adjusted to slightly larger values if the currently proposed values were excluded by future experiments. For instance, the choice M 1=350 GeV, M 2=μ=400 GeV leads to a SUSY spectrum that is very difficult to test at the LHC. In general, for a given value of tanβ and M A , slightly larger values of μ and M 1,2 would lead to a small decrease of the value of M h and therefore to a small shift of the green areas to larger values of tanβ.

  8. Large values of A t,b,τ and μ are in principle constrained by the requirement that no charge and color breaking minima should appear in the potential [136138], or at least that there is a sufficiently long-lived meta-stable vacuum. However, a detailed analysis of this issue is beyond the scope of this paper, and we leave it for a future analysis.

  9. The remark made in the previous section about the constraints from charge and color breaking minima in the scalar potential applies also here.

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  3. ATLAS Collaboration, ATLAS-CONF-2013-012

  4. CMS Collaboration, CMS-PAS-HIG-2013-001

  5. S.L. Glashow, Nucl. Phys. B 22, 579 (1961)

    Article  Google Scholar 

  6. S. Weinberg, Phys. Rev. Lett. 19, 19 (1967)

    Google Scholar 

  7. A. Salam, in Proceedings of the 8th Nobel Symposium, Stockholm, ed. by N. Svartholm (1968)

    Google Scholar 

  8. H. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  9. H. Haber, G. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  10. R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988)

    Article  Google Scholar 

  11. A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173

    Article  ADS  Google Scholar 

  12. S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659 (2006). arXiv:hep-ph/0407244

    Article  ADS  MATH  Google Scholar 

  13. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). arXiv:hep-ph/0412214

    Article  ADS  Google Scholar 

  14. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  15. S. Heinemeyer, O. Stål, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  16. M. Carena, S. Gori, N. Shah, C.E.M. Wagner, J. High Energy Phys. 1203, 014 (2012). arXiv:1112.3336 [hep-ph]

    Article  ADS  Google Scholar 

  17. M. Carena, S. Gori, N. Shah, C.E.M. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 175 (2012). arXiv:1205.5842 [hep-ph]

    Article  ADS  Google Scholar 

  18. M. Carena, I. Low, C.E.M. Wagner, J. High Energy Phys. 1208, 060 (2012). arXiv:1206.1082 [hep-ph]

    Article  ADS  Google Scholar 

  19. M. Carena, S. Gori, I. Low, N. Shah, C.E.M. Wagner, J. High Energy Phys. (to appear). arXiv:1211.6136 [hep-ph]

  20. R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stål, G. Weiglein, L. Zeune, Eur. Phys. J. C 72, 2171 (2012). arXiv:1207.1096 [hep-ph]

    Article  ADS  Google Scholar 

  21. P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, L. Zeune, arXiv:1211.1955 [hep-ph]

  22. L. Hall, D. Pinner, J. Ruderman, J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703 [hep-ph]

    Article  ADS  Google Scholar 

  23. H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    Article  ADS  Google Scholar 

  24. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  25. P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph]

    Article  ADS  Google Scholar 

  26. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. High Energy Phys. 1209, 107 (2012). arXiv:1207.1348 [hep-ph]

    Article  ADS  Google Scholar 

  27. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, Phys. Lett. B 720, 153 (2013). arXiv:1211.4004 [hep-ph]

    Article  ADS  Google Scholar 

  28. M. Cahill-Rowley, J. Hewett, A. Ismail, T. Rizzo, Phys. Rev. D 86, 075015 (2012). arXiv:1206.5800 [hep-ph]

    Article  ADS  Google Scholar 

  29. S. Akula, P. Nath, G. Peim, Phys. Lett. B 717, 188 (2012). arXiv:1207.1839 [hep-ph]

    Article  ADS  Google Scholar 

  30. S. Antusch, L. Calibbi, V. Maurer, M. Monaco, M. Spinrath, J. High Energy Phys. 1301, 187 (2013). arXiv:1207.7236 [hep-ph]

    Article  ADS  Google Scholar 

  31. U. Haisch, F. Mahmoudi, J. High Energy Phys. 1301, 061 (2013). arXiv:1210.7806 [hep-ph]

    Article  ADS  Google Scholar 

  32. M. Cabrera, J. Casas, R.R. de Austri, arXiv:1212.4821 [hep-ph]

  33. R. Gupta, M. Montull, F. Riva, J. High Energy Phys. 1304, 132 (2013). arXiv:1212.5240 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Chakraborty, B. Das, J. Diaz-Cruz, D. Ghosh, S. Moretti, P. Poulose, arXiv:1301.2745 [hep-ph]

  35. A. Bottino, N. Fornengo, S. Scopel, Phys. Rev. D 85, 095013 (2012). arXiv:1112.5666 [hep-ph]

    Article  ADS  Google Scholar 

  36. M. Drees, Phys. Rev. D 86, 115018 (2012). arXiv:1210.6507 [hep-ph]

    Article  ADS  Google Scholar 

  37. R. Barate et al. (LEP Working Group for Higgs boson searches and ALEPH DELPHI and L3 and OPAL Collaborations), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    Article  ADS  Google Scholar 

  38. B. Petersen (ATLAS Collaboration), talk given at HCP2012, see: http://kds.kek.jp/materialDisplay.py?contribId=46&sessionId=20&materialId=slides&confId=9237

  39. R. Gray (CMS Collaboration), talk given at HCP2012, see: http://kds.kek.jp/materialDisplay.py?contribId=48&sessionId=20&materialId=slides&confId=9237

  40. S. Schael et al., (ALEPH, DELPHI, L3, and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  41. M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, arXiv:hep-ph/9912223

  42. M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601 (2003). arXiv:hep-ph/0202167

    Article  ADS  Google Scholar 

  43. S. Heinemeyer, W. Hollik, G. Weiglein, J. High Energy Phys. 0006, 009 (2000). arXiv:hep-ph/9909540

    Article  ADS  Google Scholar 

  44. M. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 45, 797 (2006). arXiv:hep-ph/0511023

    Article  ADS  Google Scholar 

  45. M. Carena, P. Chankowski, S. Pokorski, C. Wagner, Phys. Lett. B 441, 205 (1998). arXiv:hep-ph/9805349

    Article  ADS  Google Scholar 

  46. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  47. J. Espinosa, I. Navarro, Nucl. Phys. B 615, 82 (2001). arXiv:hep-ph/0104047

    Article  ADS  Google Scholar 

  48. M. Carena, H. Haber, S. Heinemeyer, W. Hollik, C. Wagner, G. Weiglein, Nucl. Phys. B 580, 29 (2000). arXiv:hep-ph/0001002

    Article  ADS  Google Scholar 

  49. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  50. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009); see http://www.feynhiggs.de

    Article  ADS  MATH  Google Scholar 

  51. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  52. J. Lee, A. Pilaftsis, M. Carena, S. Choi, M. Drees, J. Ellis, C. Wagner, Comput. Phys. Commun. 156, 283 (2004). arXiv:hep-ph/0307377

    Article  ADS  Google Scholar 

  53. J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Comput. Phys. Commun. 180, 312 (2009). arXiv:0712.2360 [hep-ph]

    Article  ADS  Google Scholar 

  54. J. Lee, M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, arXiv:1208.2212 [hep-ph]

  55. J. Casas, J. Espinosa, M. Quirós, A. Riotto, Nucl. Phys. B 3, 466 (1995)

    Article  ADS  Google Scholar 

  56. J. Casas, J. Espinosa, M. Quirós, A. Riotto, Nucl. Phys. B 439, 466 (1995). arXiv:hep-ph/9407389

    Article  ADS  Google Scholar 

  57. M. Carena, J. Espinosa, M. Quirós, C. Wagner, Phys. Lett. B 355, 209 (1995). arXiv:hep-ph/9504316

    Article  ADS  Google Scholar 

  58. M. Carena, M. Quirós, C. Wagner, Nucl. Phys. B 461, 407 (1996). arXiv:hep-ph/9508343

    Article  ADS  Google Scholar 

  59. S. Martin, Phys. Rev. D 65, 116003 (2002). arXiv:hep-ph/0111209

    Article  ADS  Google Scholar 

  60. S. Martin, Phys. Rev. D 66, 096001 (2002). arXiv:hep-ph/0206136

    Article  ADS  Google Scholar 

  61. S. Martin, Phys. Rev. D 67, 095012 (2003). arXiv:hep-ph/0211366

    Article  ADS  Google Scholar 

  62. S. Martin, Phys. Rev. D 68, 075002 (2003). arXiv:hep-ph/0307101

    Article  ADS  Google Scholar 

  63. S. Martin, Phys. Rev. D 70, 016005 (2004). arXiv:hep-ph/0312092

    Article  ADS  Google Scholar 

  64. S. Martin, Phys. Rev. D 71, 016012 (2005). arXiv:hep-ph/0405022

    Article  ADS  Google Scholar 

  65. S. Martin, Phys. Rev. D 71, 116004 (2005). arXiv:hep-ph/0502168

    Article  ADS  Google Scholar 

  66. S. Martin, D. Robertson, Comput. Phys. Commun. 174, 133 (2006). arXiv:hep-ph/0501132

    Article  ADS  MATH  Google Scholar 

  67. S. Martin, Phys. Rev. D 75, 055005 (2007). arXiv:hep-ph/0701051

    Article  ADS  Google Scholar 

  68. R. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Phys. Rev. Lett. 100, 191602 (2008). Phys. Rev. Lett. 101, 039901 (2008). arXiv:0803.0672 [hep-ph]

    Article  ADS  Google Scholar 

  69. R. Harlander, P. Kant, L. Mihaila, M. Steinhauser, J. High Energy Phys. 1008, 104 (2010). arXiv:1005.5709 [hep-ph]

    ADS  Google Scholar 

  70. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 455, 179 (1999). arXiv:hep-ph/9903404

    Article  ADS  Google Scholar 

  71. B. Allanach, A. Djouadi, J. Kneur, W. Porod, P. Slavich, J. High Energy Phys. 0409, 044 (2004). arXiv:hep-ph/0406166

    Article  ADS  Google Scholar 

  72. K. Williams, H. Rzehak, G. Weiglein, Eur. Phys. J. C 71, 1669 (2011). arXiv:1103.1335 [hep-ph]

    Article  ADS  Google Scholar 

  73. R. Hempfling, Phys. Rev. D 49, 6168 (1994)

    Article  ADS  Google Scholar 

  74. L. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309

    Article  ADS  Google Scholar 

  75. M. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253

    Article  ADS  Google Scholar 

  76. M. Carena, D. Garcia, U. Nierste, C. Wagner, Nucl. Phys. B 577, 577 (2000). arXiv:hep-ph/9912516

    Google Scholar 

  77. H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, Y. Yamada, Phys. Rev. D 62, 055006 (2000). arXiv:hep-ph/9912463

    Article  ADS  Google Scholar 

  78. J. Guasch, P. Häfliger, M. Spira, Phys. Rev. D 68, 115001 (2003). arXiv:hep-ph/0305101

    Article  ADS  Google Scholar 

  79. M. Carena, S. Mrenna, C. Wagner, Phys. Rev. D 60, 075010 (1999). arXiv:hep-ph/9808312

    Article  ADS  Google Scholar 

  80. M. Carena, S. Mrenna, C. Wagner, Phys. Rev. D 62, 055008 (2000). arXiv:hep-ph/9907422

    Article  ADS  Google Scholar 

  81. A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 643, 79 (2002). arXiv:hep-ph/0206101

    Article  ADS  Google Scholar 

  82. G. Degrassi, A. Dedes, P. Slavich, Nucl. Phys. B 672, 144 (2003). arXiv:hep-ph/0305127

    Article  ADS  Google Scholar 

  83. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114

    Article  ADS  Google Scholar 

  84. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, arXiv:hep-ph/0506254

  85. L. Hofer, U. Nierste, D. Scherer, J. High Energy Phys. 0910, 081 (2009). arXiv:0907.5408 [hep-ph]

    Article  ADS  Google Scholar 

  86. D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087 [hep-ph]

    Article  ADS  Google Scholar 

  87. D. Noth, M. Spira, J. High Energy Phys. 1106, 084 (2011). arXiv:1001.1935 [hep-ph]

    Article  ADS  Google Scholar 

  88. A. Crivellin, C. Greub, Phys. Rev. D 87, 015013 (2013). arXiv:1210.7453 [hep-ph]

    Article  ADS  Google Scholar 

  89. S. Gennai et al., Eur. Phys. J. C 52, 383 (2007). arXiv:0704.0619 [hep-ph]

    Article  ADS  Google Scholar 

  90. M. Hashemi et al., arXiv:0804.1228 [hep-ph]

  91. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 35, 1 (2004). arXiv:hep-ex/0401026

    Article  ADS  Google Scholar 

  92. Tevatron Electroweak Working Group, the CDF and DØ Collaborations, arXiv:1107.5255 [hep-ex]

  93. A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). hep-ph/9704448

    Article  ADS  MATH  Google Scholar 

  94. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. 181, 138 (2010). arXiv:0811.4169 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  95. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. Williams, Comput. Phys. Commun. 182, 2605 (2011). arXiv:1102.1898 [hep-ph]

    Article  ADS  Google Scholar 

  96. P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. Williams, arXiv:1301.2345 [hep-ph]

  97. P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. Williams, Manual for HiggsBounds 4.0.0. http://higgsbounds.hepforge.org

  98. CMS Collaboration, CMS-PAS-HIG-12-050

  99. G. Aad et al. (ATLAS Collaboration), arXiv:1211.6956 [hep-ex]

  100. G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1206, 039 (2012). arXiv:1204.2760 [hep-ex]

    Article  ADS  Google Scholar 

  101. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1207, 143 (2012). arXiv:1205.5736 [hep-ex]

    Article  ADS  Google Scholar 

  102. CMS Collaboration, CMS-PAS-HIG-12-045

  103. K. Williams, G. Weiglein, Phys. Lett. B 660, 217 (2008). arXiv:0710.5320 [hep-ph]

    Article  ADS  Google Scholar 

  104. M. Bisset, J. Li, N. Kersting, F. Moortgat, S. Moretti, J. High Energy Phys. 0908, 037 (2009). arXiv:0709.1029 [hep-ph]

    Article  ADS  Google Scholar 

  105. M. Bisset, F. Moortgat, S. Moretti, Eur. Phys. J. C 30, 419 (2003). arXiv:hep-ph/0303093

    Article  ADS  Google Scholar 

  106. F. Moortgat, S. Abdullin, D. Denegri, arXiv:hep-ph/0112046

  107. W. Altmannshofer, M. Carena, N. Shah, F. Yu, arXiv:1211.1976 [hep-ph]

  108. S. Chatrchyan et al. (CMS Collaboration), arXiv:1302.2892 [hep-ex]

  109. M. Carena, S. Gori, A. Juste, A. Menon, C.E.M. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 091 (2012). arXiv:1203.1041 [hep-ph]

    Article  ADS  Google Scholar 

  110. A. Djouadi, Phys. Lett. B 435, 101 (1998). arXiv:hep-ph/9806315

    Article  ADS  Google Scholar 

  111. J. Ellis, M. Gaillard, D. Nanopoulos, Nucl. Phys. B 106, 292 (1976)

    ADS  Google Scholar 

  112. M. Shifman, A. Vainshtein, M. Voloshin, V. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979) [Yad. Fiz. 30, 1368 (1979)]

    Google Scholar 

  113. K. Blum, R. D’Agnolo, J. Fan, J. High Energy Phys. 1301, 057 (2013). arXiv:1206.5303 [hep-ph]

    Article  ADS  Google Scholar 

  114. M. Buckley, D. Hooper, Phys. Rev. D 86, 075008 (2012). arXiv:1207.1445 [hep-ph]

    Article  ADS  Google Scholar 

  115. J. Espinosa, C. Grojean, V. Sanz, M. Trott, J. High Energy Phys. 1212, 077 (2012). arXiv:1207.7355 [hep-ph]

    Article  ADS  Google Scholar 

  116. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211802 (2012). arXiv:1208.1447 [hep-ex]

    Article  ADS  Google Scholar 

  117. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211803 (2012). arXiv:1208.2590 [hep-ex]

    Article  ADS  Google Scholar 

  118. G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1211, 094 (2012). arXiv:1209.4186 [hep-ex]

    Article  ADS  Google Scholar 

  119. G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2237 (2012). arXiv:1208.4305 [hep-ex]

    Article  ADS  Google Scholar 

  120. G. Aad et al., arXiv:1209.2102 [hep-ex]

  121. G. Aad et al., ATLAS-CONF-2012-166

  122. G. Aad et al., ATLAS-CONF-2012-167

  123. G. Aad et al., ATLAS-CONF-2013-001

  124. G. Aad et al. CMS Collaboration, PAS-SUS-12-023

  125. G. Aad et al., PAS-SUS-12-028

  126. G. Aad et al., PAS-SUS-12-029

  127. G. Aad et al., PAS-SUS-11-030

  128. T. Aaltonen et al. (CDF Collaboration), J. High Energy Phys. 1210, 158 (2012). arXiv:1203.4171 [hep-ex]

    Article  ADS  Google Scholar 

  129. V. Abazov et al. (DØ Collaboration), Phys. Lett. B 665, 1 (2008). arXiv:0803.2263 [hep-ex]

    Article  ADS  Google Scholar 

  130. J.-J. Cao, Z.-X. Heng, J. Yang, Y.-M. Zhang, J.-Y. Zhu, J. High Energy Phys. 1203, 086 (2012). arXiv:1202.5821 [hep-ph]

    Article  ADS  Google Scholar 

  131. K. Hagiwara, J. Lee, J. Nakamura, J. High Energy Phys. 1210, 002 (2012). arXiv:1207.0802 [hep-ph]

    Article  ADS  Google Scholar 

  132. G. Giudice, P. Paradisi, A. Strumia, J. High Energy Phys. 1210, 186 (2012). arXiv:1207.6393 [hep-ph]

    Article  ADS  Google Scholar 

  133. M. Ajaib, I. Gogoladze, Q. Shafi, Phys. Rev. D 86, 095028 (2012). arXiv:1207.7068 [hep-ph]

    Article  ADS  Google Scholar 

  134. A. Dabelstein, Nucl. Phys. B 456, 25 (1995). arXiv:hep-ph/9503443

    Article  ADS  Google Scholar 

  135. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139 (2000). arXiv:hep-ph/0003022

    Article  ADS  Google Scholar 

  136. J. Casas, A. Lleyda, C. Muñoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294

    Article  ADS  Google Scholar 

  137. A. Kusenko, P. Langacker, G. Segre, Phys. Rev. D 54, 5824 (1996). arXiv:hep-ph/9602414

    Article  ADS  Google Scholar 

  138. J. Hisano, S. Sugiyama, Phys. Lett. B 696, 92 (2011) [Erratum-ibid., B 719, 472 (2013)]. arXiv:1011.0260 [hep-ph]

    Article  ADS  Google Scholar 

  139. W. Hollik, Priv. communication

Download references

Acknowledgements

We thank C. Acereda Ortiz for discussions on the decay rates of Hhh and Y. Linke for discussions on the \(m_{h}^{\mathrm{mod}}\) and low-M H scenarios. We thank P. Bechtle and T. Stefaniak for discussions on HiggsBounds. This work has been supported by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings, and the Early Universe”. The work of S.H. was partially supported by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. The work of O.S. is supported by the Swedish Research Council (VR) through the Oskar Klein Centre. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carena.

Appendix:  Summary of parameter values

Appendix:  Summary of parameter values

Table 1 Summary of parameter values for the proposed benchmark scenarios, given in the on-shell (OS) scheme unless otherwise noted. Numbers in parentheses refer to calculations with Δ τ effects included in the stau mass evaluation (see the description of the light stau scenario for details). Dimensionful quantities are given in GeV

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carena, M., Heinemeyer, S., Stål, O. et al. MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle. Eur. Phys. J. C 73, 2552 (2013). https://doi.org/10.1140/epjc/s10052-013-2552-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2552-1

Keywords

Navigation