Skip to main content
Log in

Massive gravity with N=1 local supersymmetry

  • Letter
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A consistent theory of massive gravity, where the graviton acquires mass by spontaneously breaking diffeomorphism invariance, is now well established. We supersymmetrize this construction using N=1 fields. Coupling to N=1 supergravity is done by applying the rules of tensor calculus to construct an action invariant under local N=1 supersymmetry. The supersymmetric action is shown, at the quadratic level, to be free of ghosts and have as its spectrum a massive graviton, two gravitinos (with different masses) and a massive vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. van Dam, M.J.G. Veltman, Massive and massless Yang–Mills and gravitational fields. Nucl. Phys. B 22, 397 (1970)

    Article  ADS  Google Scholar 

  2. V.I. Zakharov, Linearized gravitation theory and the graviton mass. JETP Lett. 12, 312 (1970)

    ADS  Google Scholar 

  3. M. Fierz, W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  4. D.G. Boulware, S. Deser, Can gravity have a finite range? Phys. Rev. D 6, 3368 (1972)

    Article  ADS  Google Scholar 

  5. A.I. Vainshtein, To the problem of nonvanishing graviton mass. Phys. Lett. B 39, 393 (1972)

    Article  ADS  Google Scholar 

  6. C.J. Isham, A. Salam, J.A. Strathdee, F-dominance of gravity. Phys. Rev. D 3, 867 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  7. A.H. Chamseddine, A. Salam, J.A. Strathdee, Strong gravity and supersymmetry. Nucl. Phys. B 136, 248 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  8. G.R. Dvali, G. Gabadadze, M. Porrati, 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. N. Arkani-Hamed, H. Georgi, M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space. Ann. Phys. 305, 96 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. W. Siegel, Hidden gravity in open-string field theory. Phys. Rev. D 49, 4144 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  11. G. ’t Hooft, Unitarity in the Brout–Englert–Higgs mechanism for gravity, arXiv:0708.3184 (2007)

  12. Z. Kakushadze, Massless limit of gravitational Higgs mechanism. Int. J. Geom. Methods Mod. Phys. 05, 157 (2008)

    Article  MathSciNet  Google Scholar 

  13. A. Chamseddine, V. Mukhanov, Higgs for graviton: simple and elegant solution. J. High Energy Phys. 08, 11 (2010)

    Article  ADS  Google Scholar 

  14. L. Alberte, A. Chamseddine, V. Mukhanov, Massive gravity: resolving the puzzle. J. High Energy Phys. 12, 23 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Chamseddine, V. Mukhanov, Massive gravity simplified: a quadratic action. J. High Energy Phys. 08, 91 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  16. C. de Rham, G. Gabadadze, Generalization of the Fierz–Pauli action. Phys. Rev. D 82, 4 (2010)

    Google Scholar 

  17. C. de Rham, G. Gabadadze, A.J. Tolley, Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011)

    Article  ADS  Google Scholar 

  18. S.F. Hassan, R.A. Rosen, Resolving the ghost problem in nonlinear massive gravity. Phys. Rev. Lett. 108(108), 041101 (2012)

    Article  ADS  Google Scholar 

  19. S.F. Hassan, R.A. Rosen, A. Schmidt-May, Ghost-free massive gravity with a general reference metric. J. High Energy Phys. 02, 026 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Deser, A. Waldron, Acausality of massive gravity. Phys. Rev. Lett. 110, 111101 (2013)

    Article  ADS  Google Scholar 

  21. J. Wess, J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, 1992)

    Google Scholar 

  22. O. Malaeb, Supersymmetrizing massive gravity. Phys. Rev. D 88, 025002 (2013). doi:10:1103/PhysRevD.88.025002

    Article  ADS  Google Scholar 

  23. E. Cremmer, S. Ferrara, L. Girardello, A. Van Proeyen, Yang–Mills theories with local supersymmetry: Lagrangian, transformation laws and super-Higgs effect. Nucl. Phys. B 212, 413 (1983)

    Article  ADS  Google Scholar 

  24. P. Nath, R. Arnowitt, A. Chamseddine, Applied N=1 Supergravity (World Scientific, Singapore, 1984)

    Book  Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Ali Chamseddine for suggesting the problem and for his many helpful discussions on the subject. I would like to thank the American University of Beirut (Faculty of Science) for support.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Malaeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malaeb, O. Massive gravity with N=1 local supersymmetry. Eur. Phys. J. C 73, 2549 (2013). https://doi.org/10.1140/epjc/s10052-013-2549-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2549-9

Keywords

Navigation