Skip to main content
Log in

Creation of planar charged fermions in Coulomb and Aharonov–Bohm potentials

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The creation of charged fermions from the vacuum by a Coulomb field in the presence of an Aharonov–Bohm (AB) potential are studied in 2+1 dimensions. The process is governed by a (singular) Dirac Hamiltonian that requires the supplementary definition in order for it to be treated as a self-adjoint quantum-mechanical operator. By constructing a one-parameter self-adjoint extension of the Dirac Hamiltonian, specified by boundary conditions, we describe the (virtual bound) quasistationary states with “complex energy” emerging in an attractive Coulomb potential, derive for the first time, complex equations (depending upon the electron spin and the extension parameter) for the quasistationary state “complex energy”. The constructed self-adjoint Dirac Hamiltonians in Coulomb and AB potentials are applied to provide a correct description to the low-energy electron excitations, as well as the creation of charged quasiparticles from the vacuum in graphene by the Coulomb impurity in the presence of AB potential. It is shown that the strong Coulomb field can create charged fermions for some range of the extension parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Pieper, W. Greiner, Z. Phys. 218, 327 (1969)

    Article  ADS  Google Scholar 

  2. S.S. Gershtein, Ya.B. Zel’dovich, Sov. Phys. JETP 30, 358 (1970)

    Google Scholar 

  3. Y.B. Zeldovich, V.S. Popov, Sov. Phys. Usp. 14, 673 (1972)

    Article  ADS  Google Scholar 

  4. A.B. Migdal, Fermions and Bosons in Strong Fields (Nauka, Moscow, 1978), in Russian

    Google Scholar 

  5. J. Rafelski, L.P. Fulcher, A. Klein, Phys. Rep. 38, 227–361 (1978)

    Article  ADS  Google Scholar 

  6. M. Soffel, B. Muller, W. Greiner, Phys. Rep. 85, 51–122 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  7. V.B. Berestetzkii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, 2nd edn. (Pergamon, New York, 1982)

    Google Scholar 

  8. W. Greiner, J. Reinhardt, Quantum Electrodynamics, 4th edn. (Springer, Berlin, 2009)

    MATH  Google Scholar 

  9. V.R. Khalilov, C.-L. Ho, Mod. Phys. Lett. A 13, 615 (1998)

    Article  ADS  Google Scholar 

  10. V.R. Khalilov, Theor. Math. Phys. 158, 210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  12. A.H. Castro Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  13. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012)

    Article  ADS  Google Scholar 

  14. K.S. Novoselov et al., Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  15. Z. Jiang, Y. Zhang, H.L. Stormer, P. Kim, Phys. Rev. Lett. 99, 106802 (2007)

    Article  ADS  Google Scholar 

  16. V.M. Pereira, J. Nilsson, A.H. Castro Neto, Phys. Rev. Lett. 99, 166802 (2007)

    Article  ADS  Google Scholar 

  17. A.V. Shytov, M.I. Katsnelson, L.S. Levitov, Phys. Rev. Lett. 99, 236801 (2007)

    Article  ADS  Google Scholar 

  18. I.F. Herbut, Phys. Rev. Lett. 104, 066404 (2010)

    Article  ADS  Google Scholar 

  19. D. Allor, T.D. Cohen, D.A. McGady, Phys. Rev. D 78, 096009 (2008)

    Article  ADS  Google Scholar 

  20. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  21. J. Gonzarlez, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 424, 595 (1994)

    Article  ADS  Google Scholar 

  22. J. Gonzarlez, F. Guinea, M.A.H. Vozmediano, J. Low Temp. Phys. 287, 99 (1995)

    Google Scholar 

  23. A.V. Shytov, M.I. Katsnelson, L.S. Levitov, Phys. Rev. Lett. 99, 246802 (2007)

    Article  ADS  Google Scholar 

  24. O.V. Gamayun, E.V. Gorbar, V.P. Gusynin, Phys. Rev. B 80, 165429 (2009)

    Article  ADS  Google Scholar 

  25. K.S. Gupta, S. Sen, Mod. Phys. Lett. A 24, 99 (2009)

    Article  ADS  MATH  Google Scholar 

  26. R. Jackiw, A.I. Milstein, S.-Y. Pi, I.S. Terekhov, Phys. Rev. B 80, 033413 (2009)

    Article  ADS  Google Scholar 

  27. I.S. Terekhov, A.I. Milstein, V.N. Kotov, O.P. Sushkov, Phys. Rev. Lett. 100, 076803 (2008)

    Article  ADS  Google Scholar 

  28. S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 53, 7162 (1996)

    Article  ADS  Google Scholar 

  29. Q.-g. Lin, J. Phys. G, Nucl. Part. Phys. 25, 17 (1999)

    Article  ADS  Google Scholar 

  30. C.G. Beneventano, P. Giacconi, E.M. Santangelo, R. Soldati, J. Phys. A 40, 435 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  31. C.G. Beneventano, P. Giacconi, E.M. Santangelo, R. Soldati, J. Phys. A 42, 275401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. B.L. Voronov, D.M. Gitman, I.V. Tyutin, Theor. Math. Phys. 150, 34 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.M. Gitman, I.V. Tyutin, B.L. Voronov, Self-adjoint Extensions in Quantum Mechanics (Springer, New York, 2012)

    Book  MATH  Google Scholar 

  34. V.R. Khalilov, C.-L. Ho, Ann. Phys. 323, 1280 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Ph. de Sousa Gerbert, Phys. Rev. D 40, 1346 (1989)

    Article  Google Scholar 

  36. M.G. Alford, J. March-Pussel, F. Wilczek, Nucl. Phys. B 328, 140 (1989)

    Article  ADS  Google Scholar 

  37. V.R. Khalilov, Theor. Math. Phys. 163, 511 (2010)

    Article  MATH  Google Scholar 

  38. E.O. Silva, F.M. Andrade, C. Filgueiras, H. Belich, Eur. Phys. J. C 73(4), 2402 (2013)

    Article  ADS  Google Scholar 

  39. Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  40. M.G. Alford, F. Wilczek, Phys. Rev. Lett. 62, 1071 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  41. S.P. Gavrilov, D.M. Gitman, A.A. Smirnov, Eur. Phys. J. C 30, 009 (2003)

    Google Scholar 

  42. D.M. Gitman, I.V. Tyutin, A. Smirnov, B.L. Voronov, Phys. Scr. 85, 045003 (2012)

    Article  ADS  Google Scholar 

  43. Y. Hosotani, Phys. Lett. B 319, 332 (1993)

    Article  ADS  Google Scholar 

  44. C.R. Hagen, Phys. Rev. Lett. 64, 503 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. V.R. Khalilov, K.-E. Lee, J. Phys. A, Math. Theor. 44, 205303 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  46. V.R. Khalilov, Phys. Rev. A 71, 012105 (2005)

    Article  ADS  Google Scholar 

  47. V.R. Khalilov, K.-E. Lee, Mod. Phys. Lett. A 26(12), 865 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 5th edn. (Academic Press, San Diego, 1994)

    MATH  Google Scholar 

  49. R. Jackiw, V.P. Nair, Phys. Rev. D 43, 1933 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  50. A.H. Castro Neto, V.N. Kotov, V.M. Pereira, J. Nilsson, N.M. Peres, B. Uchoa, Solid State Commun. 149, 1094 (2009)

    Article  ADS  Google Scholar 

  51. X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to K.E. Lee for the help with the numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Khalilov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalilov, V.R. Creation of planar charged fermions in Coulomb and Aharonov–Bohm potentials. Eur. Phys. J. C 73, 2548 (2013). https://doi.org/10.1140/epjc/s10052-013-2548-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2548-x

Keywords

Navigation