Skip to main content
Log in

(N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we study (N+1)-dimensional evolving wormholes supported by energy satisfying a polytropic equation of state. The considered evolving wormhole models are described by a constant redshift function and generalizes the standard flat Friedmann–Robertson–Walker spacetime. The polytropic equation of state allows us to consider in (3+1)-dimensions generalizations of the phantom energy and the generalized Chaplygin gas sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.S. Morris et al., Phys. Rev. Lett. 61, 1446 (1988)

    Article  ADS  Google Scholar 

  2. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. Visser, Lorentzian Wormholes: From Einstein to Hawking (AIP, New York, 1995)

    Google Scholar 

  4. A. Anabalon, A. Cisterna, Phys. Rev. D 85, 084035 (2012)

    Article  ADS  Google Scholar 

  5. G.A.S. Dias, J.P.S. Lemos, Phys. Rev. D 82, 084023 (2010)

    Article  ADS  Google Scholar 

  6. A.B. Balakin, J.P.S. Lemos, A.E. Zayats, Phys. Rev. D 81, 084015 (2010)

    Article  ADS  Google Scholar 

  7. M. Jamil, P.K.F. Kuhfittig, F. Rahaman, S.A. Rakib, Eur. Phys. J. C 67, 513 (2010)

    Article  ADS  Google Scholar 

  8. M. Jamil, M.U. Farooq, Int. J. Theor. Phys. 49, 835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. E.F. Eiroa, Phys. Rev. D 80, 044033 (2009)

    Article  ADS  Google Scholar 

  10. J. Estevez-Delgado, T. Zannias, Int. J. Mod. Phys. A 23, 3165 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. Cataldo, P. Salgado, P. Minning, Phys. Rev. D 66, 124008 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Cataldo, P. Meza, P. Minning, Phys. Rev. D 83, 044050 (2011)

    Article  ADS  Google Scholar 

  13. S.H. Hendi, J. Math. Phys. 52, 042502 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. S.H. Hendi, Can. J. Phys. 89, 281 (2011)

    Article  ADS  Google Scholar 

  15. I. Bochicchio, V. Faraoni, Phys. Rev. D 82, 044040 (2010)

    Article  ADS  Google Scholar 

  16. M. Jamil, M. Akbar. arXiv:0911.2556 [hep-th]

  17. M. Jamil, M. Akbar, Int. J. Theor. Phys. 50, 1602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Hansen, D.i. Hwang, D.h. Yeom, J. High Energy Phys. 0911, 016 (2009)

    Article  ADS  Google Scholar 

  19. A. DeBenedictis, R. Garattini, F.S.N. Lobo, Phys. Rev. D 78, 104003 (2008)

    Article  ADS  Google Scholar 

  20. P.F. Gonzalez-Diaz, Phys. Rev. D 68, 084016 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. F.S.N. Lobo, Phys. Rev. D 71, 124022 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  22. F.S.N. Lobo, Phys. Rev. D 73, 064028 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. O. Bertolami, R.Z. Ferreira, Phys. Rev. D 85, 104050 (2012)

    Article  ADS  Google Scholar 

  24. F. Darabi, Can. J. Phys. 90, 461 (2012)

    Article  ADS  Google Scholar 

  25. S.N. Sajadi, N. Riazi, Prog. Theor. Phys. 126, 753 (2011)

    Article  ADS  MATH  Google Scholar 

  26. M.H. Dehghani, S.H. Hendi, Gen. Relativ. Gravit. 41, 1853 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. F.S.N. Lobo, M.A. Oliveira, Phys. Rev. D 80, 104012 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Jamil et al., Eur. Phys. J. C 67, 513 (2010)

    Article  ADS  Google Scholar 

  29. U.S. Nilsson, C. Uggla, Ann. Phys. 286, 292 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Bayin, Phys. Rev. D 18, 2745 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  31. P.M. Sa, Phys. Lett. B 467, 40 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. M. Cataldo et al., Phys. Rev. D 79, 024005 (2009)

    Article  ADS  Google Scholar 

  33. R.C. Myers, M.J. Perry, Ann. Phys. 172, 304 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. C.P. Burgess, Class. Quantum Gravity 24, S795 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A. Kurek, M. Szydlowski, Astrophys. J. 675, 1 (2008)

    Article  ADS  Google Scholar 

  36. M. Douspis et al. (Archeops Collaboration), New Astron. Rev. 47, 755 (2003)

    Article  ADS  Google Scholar 

  37. M. Cataldo, S. del Campo, Phys. Rev. D 85, 104010 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CONICYT through Grant FONDECYT No. 1080530 and by the Dirección de Investigación de la Universidad del Bio-Bío through grants No. DIUBB 121007 2/R and No. GI121407/VBC (MC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Cataldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cataldo, M., Aróstica, F. & Bahamonde, S. (N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter. Eur. Phys. J. C 73, 2517 (2013). https://doi.org/10.1140/epjc/s10052-013-2517-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2517-4

Keywords

Navigation