Skip to main content
Log in

Cosmological tests on Visser’s massive graviton dark matter cosmology

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present the constraints on the Massive Graviton Dark Matter scenario (MGCDM) using the cosmological observations, including type Ia supernovae (SNe Ia), Gamma Ray Bursts (GRB), Observational Hubble Parameter Data (OHD), Cosmic Microwave Background shift parameter, and the Radial Baryon Acoustic Oscillation. In order to compare the goodness of the data samples and their combinations, we adopt the Fisher matrix analysis and the figure of merit (FoM) diagnostic. Based on the constraint results, we further discuss the cosmic age problem in MGCDM. The calculation shows that the universe in MGCDM frame is older than that in standard ΛCDM model, but the cosmic age crisis is still unresolved with just an alleviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Riess et al., Astrophys. J. 116, 1009–1038 (1998)

    Google Scholar 

  2. M. Hicken et al., Astrophys. J. 700, 1097–1140 (2009)

    Article  ADS  Google Scholar 

  3. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377–408 (2007)

    Article  ADS  Google Scholar 

  4. E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 16 (2011)

    Article  ADS  Google Scholar 

  5. D.J. Eisenstein et al., Astrophys. J. 633, 560–574 (2005)

    Article  ADS  Google Scholar 

  6. W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148–2168 (2010)

    Article  ADS  Google Scholar 

  7. D. H. Weinberg et al., arXiv:1201.2434

  8. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  9. M. Ozer, O. Taha, Nucl. Phys. B 287, 776 (1987)

    Article  ADS  Google Scholar 

  10. W. Chen, Y.-S. Wu, Phys. Rev. D 287, 776 (1990)

    Google Scholar 

  11. C.G. Boehmer, T. Harko, Eur. Phys. J. C 50, 423 (2007)

    Article  ADS  Google Scholar 

  12. S. Cao, et al., arXiv:1105.6274 (2011)

  13. X. Duan et al., arXiv:1111.3423

  14. H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)

    ADS  Google Scholar 

  15. A.A. Starobinsky, Phys. Lett. B 91, 99–102 (1980)

    Article  ADS  Google Scholar 

  16. R. Kerner, Gen. Relativ. Gravit. 14, 453–469 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Strauss et al., arXiv:1111.1655

  18. M.S. Volkov, arXiv:1110.6153

  19. G. D’Amico et al., arXiv:1108.5231

  20. M. Fierz, W. Pauli, Proc. R. Soc. A 173, 211 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  21. H. van Dam, M.J.G. Veltman, Nucl. Phys. B 22, 397 (1970)

    Article  ADS  Google Scholar 

  22. V.I. Zakharov, JETP Lett. 12, 312 (1970)

    ADS  Google Scholar 

  23. K. Hinterbichler, arXiv:1105.3735

  24. M. Visser, Gen. Relativ. Gravit. 30, 1717 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M.E.S. Alves et al., Gen. Relativ. Gravit. 40, 765 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M.E.S. Alves et al., Phys. Rev. D 82, 023505 (2010)

    Article  ADS  Google Scholar 

  27. S. Basilakos et al., Phys. Rev. D 83, 013506 (2011)

    Google Scholar 

  28. Z.L. Yi, T.J. Zhang, Mod. Phys. Lett. A 22, 41 (2007)

    Article  ADS  Google Scholar 

  29. H. Lin et al., Mod. Phys. Lett. A 22, 1699 (2009)

    Article  ADS  Google Scholar 

  30. C. Ma, T.J. Zhang, Astrophys. J. 730, 74 (2011)

    Article  ADS  Google Scholar 

  31. B.E. Schaefer, Astrophys. J. Lett. 583, 67 (2003)

    Article  ADS  Google Scholar 

  32. B.E. Schaefer, Astrophys. J. 660, 16 (2007)

    Article  ADS  Google Scholar 

  33. H. W. Lee et al., arXiv:1106.6114

  34. A. Roany et al., Phys. Rev. D 84, 084043 (2011)

    Article  ADS  Google Scholar 

  35. R. Amanullah et al., arXiv:astro-ph/0603449

  36. H. Wei, J. Cosmol. Astropart. Phys. 1008, 020 (2010)

    Article  ADS  Google Scholar 

  37. V.F. Cardone et al., Mon. Not. R. Astron. Soc. 400, 775 (2009)

    Article  ADS  Google Scholar 

  38. R. Jimenez, A. Loeb, Astrophys. J. 573, 37 (2002)

    Article  ADS  Google Scholar 

  39. R. Jimenez et al., Astrophys. J. 593, 622 (2003)

    Article  ADS  Google Scholar 

  40. J. Simon et al., Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  41. D. Stern et al., J. Cosmol. Astropart. Phys. 02, 008 (2010)

    Article  ADS  Google Scholar 

  42. S. Cao et al., arXiv:1012.4879

  43. S. Cao et al., Astron. Astrophys. 529, A61 (2011)

    Article  ADS  Google Scholar 

  44. J.R. Bond et al., Mon. Not. R. Astron. Soc. 291, L33 (1997)

    ADS  Google Scholar 

  45. C.J. Odman et al., Phys. Rev. D 67, 083511 (2003)

    Article  ADS  Google Scholar 

  46. W. Hu, N. Sugiyama, Astrophys. J. 471, 542 (1996)

    Article  ADS  Google Scholar 

  47. E. Komatsu et al., Astrophys. J. 180, 330 (2009)

    Article  Google Scholar 

  48. E. Gaztanaga et al., Phys. Rev. Lett. 103, 091302 (2009)

    Article  ADS  Google Scholar 

  49. Z. Zhai et al., Phys. Lett. B 689, 8 (2010)

    Article  ADS  Google Scholar 

  50. L. Samushia, B. Ratra, Astrophys. J. 703, 1904 (2009)

    Article  ADS  Google Scholar 

  51. Q. Su et al., arXiv:1109.2846

  52. L. Verde, arXiv:0911.3105

  53. M. Tegmark et al., Astrophys. J. 480, 22 (1997)

    Article  ADS  Google Scholar 

  54. I. Sendra, R. Lazkoz, arXiv:1105.4943

  55. J. Dossett et al., Phys. Rev. D 84, 023012 (2011)

    Article  ADS  Google Scholar 

  56. J.S. Alcaniz, J.A.S. Lima, Astrophys. J. Lett. 521, 87 (1999)

    Article  ADS  Google Scholar 

  57. J.S. Alcaniz et al., Mon. Not. R. Astron. Soc. 340, L39 (2003)

    Article  ADS  Google Scholar 

  58. S. Capozziello et al., arXiv:0706.2615

  59. S. Wang et al., Phys. Rev. D 82, 103006 (2010)

    Article  ADS  Google Scholar 

  60. J. Cui, X. Zhang, Phys. Lett. B 690, 233 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  61. A. Stockton et al., Astrophys. J. Lett. 443, 69 (1995)

    Article  ADS  Google Scholar 

  62. J. Dunlop et al., in The Most Distant Radio Galaxies, ed. by H.J.A. Rottgering, P. Best, M.D. Lehnert (Kluwer, Dordercht, 1999), p. 71

    Google Scholar 

  63. J. Dunlop et al., Nature 381, 581 (1996)

    Article  ADS  Google Scholar 

  64. H. Spinrad et al., Astrophys. J. 484, 581 (1997)

    Article  ADS  Google Scholar 

  65. Y. Yoshii et al., Astrophys. J. Lett. 507, 113 (1998)

    Article  ADS  Google Scholar 

  66. G. Hasinger et al., Astrophys. J. Lett. 573, 77 (2002)

    Article  ADS  Google Scholar 

  67. D. Jain, A. Dev, Phys. Lett. B 633, 436 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11147012, 11263003). It is also supported by the Research Funds of Hubei University for Nationalities (Grant No. MY2012B007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, XY., Zeng, XX. & Liu, XM. Cosmological tests on Visser’s massive graviton dark matter cosmology. Eur. Phys. J. C 73, 2451 (2013). https://doi.org/10.1140/epjc/s10052-013-2451-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2451-5

Keywords

Navigation