Skip to main content
Log in

Observational constraints on Rastall’s cosmology

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Rastall’s theory is a modification of General Relativity, based on the non-conservation of the stress-energy tensor. The latter is encoded in a parameter γ such that γ=1 restores the usual ∇ ν T μν=0 law. We test Rastall’s theory in cosmology, on a flat Robertson–Walker metric, investigating a two-fluid model and using the type Ia supernovae Constitution dataset. One of the fluids is pressure-less and obeys the usual conservation law, whereas the other is described by an equation of state p x =w x ρ x , with w x constant. The Bayesian analysis of the Constitution set does not strictly constrain the parameter γ and prefers values of w x close to −1. We then address the evolution of small perturbations and show that they are dramatically unstable if w x ≠−1 and γ≠1, i.e. General Relativity is the favored configuration. The only alternative is w x =−1, for which the dynamics becomes independent from γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Li, X.-D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  MATH  Google Scholar 

  2. R.R. Caldwell, M. Kamionkowski, Annu. Rev. Nucl. Part. Sci. 59, 397 (2009)

    Article  ADS  Google Scholar 

  3. G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  4. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rep. 513, 1 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  5. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  6. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  7. V. Gorini, A.Y. Kamenshchik, U. Moschella, O.F. Piattella, A.A. Starobinsky, J. Cosmol. Astropart. Phys. 0802, 016 (2008)

    Article  ADS  Google Scholar 

  8. O.F. Piattella, J. Cosmol. Astropart. Phys. 1003, 012 (2010)

    Article  ADS  Google Scholar 

  9. O.F. Piattella, D. Bertacca, M. Bruni, D. Pietrobon, J. Cosmol. Astropart. Phys. 1001, 014 (2010)

    Article  ADS  Google Scholar 

  10. D. Bertacca, M. Bruni, O.F. Piattella, D. Pietrobon, J. Cosmol. Astropart. Phys. 1102, 018 (2011)

    Article  ADS  Google Scholar 

  11. J.P. Campos, J.C. Fabris, R. Perez, O.F. Piattella, H. Velten, arXiv:1212.4136 [astro-ph.CO]

  12. W. Zimdahl, Phys. Rev. D 53, 5483 (1996)

    Article  ADS  Google Scholar 

  13. R. Colistete, J.C. Fabris, J. Tossa, W. Zimdahl, Phys. Rev. D 76, 103516 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. W.S. Hipolito-Ricaldi, H.E.S. Velten, W. Zimdahl, Phys. Rev. D 82, 063507 (2010)

    Article  ADS  Google Scholar 

  15. O.F. Piattella, J.C. Fabris, W. Zimdahl, J. Cosmol. Astropart. Phys. 1105, 029 (2011)

    Article  ADS  Google Scholar 

  16. W. Zimdahl, D. Pavon, Phys. Lett. B 521, 133 (2001)

    Article  ADS  MATH  Google Scholar 

  17. W. Zimdahl, Int. J. Mod. Phys. D 14, 2319 (2005)

    Article  ADS  MATH  Google Scholar 

  18. P. Rastall, Phys. Rev. D 6, 3357 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Rastall, Can. J. Phys. 54, 66 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J.C. Fabris, T.C.C. Guio, M. Hamani Daouda, O.F. Piattella, Gravit. Cosmol. 17, 259 (2011)

    Article  ADS  MATH  Google Scholar 

  21. C.E.M. Batista, M.H. Daouda, J.C. Fabris, O.F. Piattella, D.C. Rodrigues, Phys. Rev. D 85, 084008 (2012)

    Article  ADS  Google Scholar 

  22. J.C. Fabris, M.H. Daouda, O.F. Piattella, Phys. Lett. B 711, 232 (2012)

    Article  ADS  Google Scholar 

  23. M.H. Daouda, J.C. Fabris, O.F. Piattella, AIP Conf. Proc. 1471, 57 (2012)

    Article  ADS  Google Scholar 

  24. J.C. Fabris, O.F. Piattella, D.C. Rodrigues, C.E.M. Batista, M.H. Daouda, Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012)

    Article  Google Scholar 

  25. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982), p. 340

    Book  MATH  Google Scholar 

  26. J.C. Fabris, R. Kerner, J. Tossa, Int. J. Mod. Phys. D 9, 111 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  27. L. Perivolaropoulos, arXiv:0811.4684 [astro-ph]

  28. M. Hicken, W.M. Wood-Vasey, S. Blondin, P. Challis, S. Jha, P.L. Kelly, A. Rest, R.P. Kirshner, Astrophys. J. 700, 1097 (2009)

    Article  ADS  Google Scholar 

  29. A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  30. M. Capone, V.F. Cardone, M.L. Ruggiero, Nuovo Cimento B 125, 1133 (2011)

    Google Scholar 

  31. C.-P. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank CNPq (Brazil) and FAPES (Brazil) for partial financial support. This research has made use of the CfA Supernova Archive, which is funded in part by the National Science Foundation through grant AST 0907903.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver F. Piattella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista, C.E.M., Fabris, J.C., Piattella, O.F. et al. Observational constraints on Rastall’s cosmology. Eur. Phys. J. C 73, 2425 (2013). https://doi.org/10.1140/epjc/s10052-013-2425-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2425-7

Keywords

Navigation