# Description of a domain using a squeezed state in a scalar field theory

- 64 Downloads
- 1 Citations

## Abstract

We attempt to describe a domain using a squeezed state within quantum field theory. An extended squeeze operator is used to construct the state. Using a scalar field theory, we describe a domain in which the distributions of the condensate and of the fluctuation are both Gaussian. The momentum distribution, chaoticity, and correlation length are calculated. It is found that the typical value for the momentum is approximately the inverse of the domain size. It is also found that the chaoticity reflects the ratio of the size of the squeezed region to that of the coherent region. The results indicate that the quantum state of a domain is defined by these quantities under the assumption that the distributions are Gaussian. As an example, this method is applied to a pion field, and the momentum distribution and chaoticity are shown.

## Keywords

Coherent State Correlation Length Momentum Distribution Annihilation Operator Displacement Operator## References

- 1.D.F. Walls, G.J. Milburn,
*Quantum Optics*(Springer, Berlin, 1994) zbMATHGoogle Scholar - 2.W. Vogel, D.-G. Welsch,
*Quantum Optics*, 3rd., revised and extended edn. (Wiley-VCH, Weinheim, 2006) CrossRefGoogle Scholar - 3.H.P. Yuen, Phys. Rev. A
**13**, 2226 (1976) ADSCrossRefGoogle Scholar - 4.D.F. Walls, Nature
**306**, 141 (1983) ADSCrossRefGoogle Scholar - 5.L. Parker, Phys. Rev.
**183**, 1057 (1969) ADSzbMATHCrossRefGoogle Scholar - 6.D. Boyanovsky, H.J. de Vega, R. Holman, Phys. Rev. D
**49**, 2769 (1994) ADSCrossRefGoogle Scholar - 7.H. Mishra, A.R. Panda, J. Phys. G
**18**, 1301 (1992) ADSCrossRefGoogle Scholar - 8.A. Mishra, P.K. Panda, S. Schramm, J. Reinhardt, W. Greiner, Phys. Rev. C
**56**, 1380 (1997) ADSCrossRefGoogle Scholar - 9.A. Mishra, H. Mishra, J. Phys. G
**23**, 143 (1997) ADSCrossRefGoogle Scholar - 10.T. del Ríogaztelurrutia, A.C. Davis, Nucl. Phys. B
**347**, 319 (1990) ADSCrossRefGoogle Scholar - 11.M. Ishihara, M. Maruyama, F. Takagi, Phys. Rev. C
**57**, 1440 (1998) ADSCrossRefGoogle Scholar - 12.G. Wilk, Z. Włodarczyk, Eur. Phys. J. A
**40**, 299 (2009) ADSCrossRefGoogle Scholar - 13.M. Asakawa, T. Csörgő, M. Gyulassy, Phys. Rev. Lett.
**83**, 4013 (1999) ADSCrossRefGoogle Scholar - 14.S.S. Padula, G. Krein, T. Csörgő, Y. Hama, P.K. Panda, Phys. Rev. C
**73**, 044906 (2006) ADSCrossRefGoogle Scholar - 15.T. Csörgő, S.S. Padula, Braz. J. Phys.
**37**, 949 (2007) ADSCrossRefGoogle Scholar - 16.I.V. Andreev, R.M. Weiner, Phys. Lett. B
**373**, 159 (1996) ADSCrossRefGoogle Scholar - 17.R.D. Amado, I.I. Kogan, Phys. Rev. D
**51**, 190 (1995) ADSCrossRefGoogle Scholar - 18.H. Hiro-Oka, H. Minakata, Phys. Lett. B
**425**, 129 (1998) ADSCrossRefGoogle Scholar - 19.H. Hiro-Oka, H. Minakata, Phys. Lett. B
**434**, 461(E) (1998) ADSGoogle Scholar - 20.H. Hiro-Oka, H. Minakata, Phys. Rev. C
**61**, 044903 (2000) ADSCrossRefGoogle Scholar - 21.J. Randrup, Nucl. Phys. A
**630**, 468c (1998) ADSCrossRefGoogle Scholar - 22.S. Aoki, M. Fukugita, S. Hashimoto, K.-I. Ishikawa, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneda, S. Kaya, Y. Kuramashi, M. Okawa, T. Onogi, S. Tominaga, N. Tsutsui, A. Ukawa, N. Yamada, T. Yoshie, Phys. Rev. D
**62**, 094501 (2000) ADSCrossRefGoogle Scholar