Description of a domain using a squeezed state in a scalar field theory

  • Masamichi IshiharaEmail author
Regular Article - Theoretical Physics


We attempt to describe a domain using a squeezed state within quantum field theory. An extended squeeze operator is used to construct the state. Using a scalar field theory, we describe a domain in which the distributions of the condensate and of the fluctuation are both Gaussian. The momentum distribution, chaoticity, and correlation length are calculated. It is found that the typical value for the momentum is approximately the inverse of the domain size. It is also found that the chaoticity reflects the ratio of the size of the squeezed region to that of the coherent region. The results indicate that the quantum state of a domain is defined by these quantities under the assumption that the distributions are Gaussian. As an example, this method is applied to a pion field, and the momentum distribution and chaoticity are shown.


Coherent State Correlation Length Momentum Distribution Annihilation Operator Displacement Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin, 1994) zbMATHGoogle Scholar
  2. 2.
    W. Vogel, D.-G. Welsch, Quantum Optics, 3rd., revised and extended edn. (Wiley-VCH, Weinheim, 2006) CrossRefGoogle Scholar
  3. 3.
    H.P. Yuen, Phys. Rev. A 13, 2226 (1976) ADSCrossRefGoogle Scholar
  4. 4.
    D.F. Walls, Nature 306, 141 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    L. Parker, Phys. Rev. 183, 1057 (1969) ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    D. Boyanovsky, H.J. de Vega, R. Holman, Phys. Rev. D 49, 2769 (1994) ADSCrossRefGoogle Scholar
  7. 7.
    H. Mishra, A.R. Panda, J. Phys. G 18, 1301 (1992) ADSCrossRefGoogle Scholar
  8. 8.
    A. Mishra, P.K. Panda, S. Schramm, J. Reinhardt, W. Greiner, Phys. Rev. C 56, 1380 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    A. Mishra, H. Mishra, J. Phys. G 23, 143 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    T. del Ríogaztelurrutia, A.C. Davis, Nucl. Phys. B 347, 319 (1990) ADSCrossRefGoogle Scholar
  11. 11.
    M. Ishihara, M. Maruyama, F. Takagi, Phys. Rev. C 57, 1440 (1998) ADSCrossRefGoogle Scholar
  12. 12.
    G. Wilk, Z. Włodarczyk, Eur. Phys. J. A 40, 299 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    M. Asakawa, T. Csörgő, M. Gyulassy, Phys. Rev. Lett. 83, 4013 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    S.S. Padula, G. Krein, T. Csörgő, Y. Hama, P.K. Panda, Phys. Rev. C 73, 044906 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    T. Csörgő, S.S. Padula, Braz. J. Phys. 37, 949 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    I.V. Andreev, R.M. Weiner, Phys. Lett. B 373, 159 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    R.D. Amado, I.I. Kogan, Phys. Rev. D 51, 190 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    H. Hiro-Oka, H. Minakata, Phys. Lett. B 425, 129 (1998) ADSCrossRefGoogle Scholar
  19. 19.
    H. Hiro-Oka, H. Minakata, Phys. Lett. B 434, 461(E) (1998) ADSGoogle Scholar
  20. 20.
    H. Hiro-Oka, H. Minakata, Phys. Rev. C 61, 044903 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    J. Randrup, Nucl. Phys. A 630, 468c (1998) ADSCrossRefGoogle Scholar
  22. 22.
    S. Aoki, M. Fukugita, S. Hashimoto, K.-I. Ishikawa, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneda, S. Kaya, Y. Kuramashi, M. Okawa, T. Onogi, S. Tominaga, N. Tsutsui, A. Ukawa, N. Yamada, T. Yoshie, Phys. Rev. D 62, 094501 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of Human Life StudiesKoriyama Women’s UniversityKoriyamaJapan

Personalised recommendations