Advertisement

Myers–Pospelov model as an ensemble of Pais–Uhlenbeck oscillators: unitarity and Lorentz invariance violation

  • Justo Lopez-Sarrion
  • Carlos M. Reyes
Regular Article - Theoretical Physics

Abstract

We study a generalization of the Pais–Uhlenbeck oscillator for fermionic variables. Next, we consider an ensemble of these oscillators and we identify a particular case of the Myers–Pospelov model which is relevant for effective theories of quantum gravity. Finally, by taking advantage of this connection, we analyze, for this model, unitarity at one loop order in the low energy regime where no ghost states can be created on-shell. This energy regime is the relevant one when we consider the Myers–Pospelov model as a true effective theory coming from a new space-time structure.

Keywords

Harmonic Oscillator Loop Order Fermionic Sector Quantum Gravity Effect Lorentz Invariance Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank T. Fernandez and Prof. D. Restrepo for helpful support during the preparation of the manuscript. J.L-S. acknowledges support from DICYT Grant No. 041131LS (USACH) and FONDECYT-Chile Grant No. 1100777 and wants to thank for the hospitality at the Universidad de Antoquia. C.M.R. acknowledges partial support from Dirección de Investigación de la Universidad del Bío-Bío (DIUBB) Grant No. 123809 3/R.

References

  1. 1.
    D.A. Eliezer, R.P. Woodard, Nucl. Phys. B 325, 389 (1989) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    K.S. Stelle, Phys. Rev. D 16, 953–969 (1977) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    E.T. Tomboulis, Phys. Rev. Lett. 52, 1173 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    Z. Guralnik, R. Jackiw, S.Y. Pi, A.P. Polychronakos, Phys. Lett. B 517, 450 (2001) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    R.P. Woodard, Lect. Notes Phys. 720, 403–433 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    V.A. Kostelecky, M. Mewes, Phys. Rev. D 80, 015020 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    A. Kostelecky, M. Mewes, Phys. Rev. D 85, 096005 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    P.A. Bolokhov, M. Pospelov, Phys. Rev. D 77, 025022 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    I. Antoniadis, E. Dudas, D.M. Ghilencea, Nucl. Phys. B 767, 29 (2007) ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    D. Anselmi, Eur. Phys. J. C 65, 523 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    T. Mariz, J.R. Nascimento, A.Y. Petrov, Phys. Rev. D 85, 125003 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    T. Mariz, Phys. Rev. D 83, 045018 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    X. Jaen, J. Llosa, A. Molina, Phys. Rev. D 34, 2302 (1986) ADSCrossRefGoogle Scholar
  15. 15.
    W. Thirring, Phys. Rev. 77, 570 (1950) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    M. Visser, Phys. Rev. D 80, 025011 (2009) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A. Pais, G.E. Uhlenbeck, Phys. Rev. 79, 145–165 (1950) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    M. Ostrogradsky, Mem. Acad. St.-Peterbg.VI 4, 385–517 (1850) Google Scholar
  19. 19.
    M.S. Plyushchay, Mod. Phys. Lett. A 4, 837 (1989) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    A.V. Smilga, Nucl. Phys. B 706, 598–614 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    S.W. Hawking, T. Hertog, Phys. Rev. D 65, 103515 (2002) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    C.M. Bender, P.D. Mannheim, Phys. Rev. Lett. 100, 110402 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    A. Dector, H.A. Morales-Tecotl, L.F. Urrutia, J.D. Vergara, SIGMA 5, 053 (2009) MathSciNetGoogle Scholar
  24. 24.
    T.D. Lee, G.C. Wick, Nucl. Phys. B 9, 209 (1969) MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    T.D. Lee, G.C. Wick, Phys. Rev. D 2, 1033–1048 (1970) MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    R.E. Cutkosky, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, Nucl. Phys. B 12, 281–300 (1969) ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Espinosa, B. Grinstein, D. O’Connell, M.B. Wise, Phys. Rev. D 77, 085002 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    B. Grinstein, D. O’Connell, M.B. Wise, Phys. Rev. D 77, 025012 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    B. Fornal, B. Grinstein, M.B. Wise, Phys. Lett. B 674, 330 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    J. Lopez-Sarrion, C.M. Reyes, Eur. Phys. J. C 72, 2150 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    A. Mostafazadeh, J. Math. Phys. 44, 974 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    A. Das, L. Greenwood, Phys. Lett. B 678, 504 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Departamento de FisicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Departamento de Ciencias BásicasUniversidad del Bío BíoChillánChile

Personalised recommendations