Skip to main content

Analysis of pilgrim dark energy models

Abstract

The proposal of pilgrim dark energy is based on the idea that phantom dark energy possesses enough resistive force to preclude black hole formation. We work on this proposal by choosing an interacting framework with cold dark matter and three cutoffs such as Hubble as well as event horizon and conformal age of the universe. We present a graphical analysis and focus our study on the pilgrim dark energy as well as interacting parameters. It is found that these parameters play an effective role on the equation of state parameter for exploring the phantom region of the universe. We also make the analysis of ωω′ and point out freezing region in the ωω′ plane. Finally, it turns out that the ΛCDM is achieved in the statefinders plane for all models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    ADS  Article  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    ADS  Article  Google Scholar 

  3. R.R. Caldwell, M. Doran, Phys. Rev. D 69, 103517 (2004)

    ADS  Article  Google Scholar 

  4. T. Koivisto, D.F. Mota, Phys. Rev. D 73, 083502 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  5. H. Hoekstra, B. Jain, Annu. Rev. Nucl. Part. Sci. 58, 99 (2008)

    ADS  Article  Google Scholar 

  6. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  7. A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  8. M. Li, Phys. Lett. B 603, 1 (2004)

    ADS  Article  Google Scholar 

  9. H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008)

    ADS  Article  Google Scholar 

  10. C. Gao, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009)

    ADS  Article  Google Scholar 

  11. L. Granda, A. Oliveros, Phys. Lett. B 669, 275 (2008)

    ADS  Article  Google Scholar 

  12. S. Chen, J. Jing, Phys. Lett. B 679, 144 (2009)

    MathSciNet  ADS  Article  Google Scholar 

  13. H. Wei, Class. Quantum Gravity 29, 175008 (2012)

    ADS  Article  Google Scholar 

  14. E. Babichev, V. Dokuchaev, Y. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004)

    ADS  Article  Google Scholar 

  15. P. Martin-Moruno, Phys. Lett. B 659, 40 (2008)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  16. P. Martin-Moruno et al., Gen. Relativ. Gravit. 41, 2797 (2009)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  17. M. Jamil, M.A. Rashid, A. Qadir, Eur. Phys. J. C 58, 325 (2008)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  18. E. Babichev et al., Phys. Rev. D 78, 104027 (2008)

    ADS  Article  Google Scholar 

  19. M. Jamil, Eur. Phys. J. C 62, 325 (2009)

    MathSciNet  Article  Google Scholar 

  20. J. Bhadra, U. Debnath, Eur. Phys. J. C 72, 1912 (2012)

    ADS  Article  Google Scholar 

  21. J.A. Gonzalez, F.S. Guzman, Phys. Rev. D 79, 121501 (2009)

    ADS  Article  Google Scholar 

  22. C.Y. Sun, Commun. Theor. Phys. 52, 441 (2009)

    ADS  Article  MATH  Google Scholar 

  23. T. Harada, H. Maeda, B.J. Carr, Phys. Rev. D 74, 024024 (2006)

    ADS  Article  Google Scholar 

  24. R. Akhoury, C.S. Gauthier, A. Vikman, J. High Energy Phys. 03, 082 (2009)

    ADS  Article  Google Scholar 

  25. Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 04, 013 (2004)

    Article  Google Scholar 

  26. M. Jamil, E.N. Saridakis, M.R. Setare, Phys. Lett. B 679, 172 (2009)

    ADS  Article  Google Scholar 

  27. A. Sheykhi, Phys. Rev. D 84, 107302 (2011)

    ADS  Article  Google Scholar 

  28. K. Karami, S. Ghaffari, M.M. Soltanzadeh, Class. Quantum Gravity 27, 205021 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  29. M. Sharif, A. Jawad, Eur. Phys. J. C 72, 2097 (2012)

    ADS  Article  Google Scholar 

  30. M. Sharif, F. Khanum, Gen. Relativ. Gravit. 43, 2885 (2011)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  31. M. Sharif, A. Jawad, Eur. Phys. J. C 72, 1901 (2012)

    ADS  Article  Google Scholar 

  32. M. Sharif, A. Jawad, Astrophys. Space Sci. 337, 789 (2012)

    ADS  Article  MATH  Google Scholar 

  33. R.R. Caldwell, E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005)

    ADS  Article  Google Scholar 

  34. R.J. Scherrer, Phys. Rev. D 73, 043502 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  35. T. Chiba, Phys. Rev. D 73, 063501 (2006)

    ADS  Article  Google Scholar 

  36. Z.K. Guo, Y.S. Piao, X.M. Zhang, Y.Z. Zhang, Phys. Rev. D 74, 127304 (2006)

    ADS  Article  Google Scholar 

  37. V. Sahni et al., JETP Lett. 77, 201 (2003)

    ADS  Article  Google Scholar 

  38. U. Alam et al., Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    ADS  Article  Google Scholar 

  39. C. Feng, Phys. Lett. B 670, 231 (2008)

    ADS  Article  Google Scholar 

  40. M.R. Setare, J. Zhang, X. Zhang, J. Cosmol. Astropart. Phys. 03, 007 (2007)

    ADS  Article  Google Scholar 

  41. M. Malekjani, A. Khodam-Mohammadi, N. Nazari-pooya, Astrophys. Space Sci. 332, 515 (2011)

    ADS  Article  Google Scholar 

  42. C.Y. Sun, R.G. Yue, Phys. Rev. D 85, 043010 (2012)

    ADS  Article  Google Scholar 

  43. D. Pavon, W. Zimdahl, Phys. Lett. B 628, 206 (2005)

    ADS  Article  Google Scholar 

  44. W. Zimdahl, D. Pavon, Class. Quantum Gravity 24, 5461 (2007)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  45. I. Durán, D. Pavón, W. Zimdahlb, J. Cosmol. Astropart. Phys. 07, 018 (2010)

    ADS  Article  Google Scholar 

  46. Y. Gong, T. Li, Phys. Lett. B 683, 241 (2010)

    ADS  Article  Google Scholar 

  47. M. Sharif, A. Jawad, Int. J. Mod. Phys. D 22, 1350014 (2013)

    ADS  Article  Google Scholar 

  48. M.R. Setare, J. Cosmol. Astropart. Phys. 01, 023 (2007)

    MathSciNet  ADS  Article  Google Scholar 

  49. A. Sheykhi, Class. Quantum Gravity 27, 025007 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  50. M. Mazumder, S. Chakraborty, Gen. Relativ. Gravit. 42, 813 (2010)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  51. Q.G. Huang, Y.G. Gong, J. Cosmol. Astropart. Phys. 08, 006 (2004)

    ADS  Article  Google Scholar 

  52. S.B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 609, 200 (2005)

    ADS  Article  Google Scholar 

  53. X. Zhang, F.Q. Wu, Phys. Rev. D 72, 043524 (2005)

    ADS  Article  Google Scholar 

  54. C. Feng et al., J. Cosmol. Astropart. Phys. 09, 005 (2007)

    ADS  Article  Google Scholar 

  55. J. Lu et al., J. Cosmol. Astropart. Phys. 03, 031 (2010)

    ADS  Article  Google Scholar 

  56. R.G. Cai, Phys. Lett. B 657, 228 (2007)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  57. H. Wei, R.G. Cai, Phys. Lett. B 663, 1 (2008)

    ADS  Article  Google Scholar 

  58. J.F. Zhang, Y.H. Li, X. Zhang, Eur. Phys. J. C 73, 2280 (2013)

    ADS  Article  Google Scholar 

  59. H. Wei, R.G. Cai, Eur. Phys. J. C 59, 99 (2009)

    ADS  Article  Google Scholar 

  60. A. Sheykhi, A. Bagheria, M.M. Yazdanpanaha, J. Cosmol. Astropart. Phys. 09, 017 (2010)

    ADS  Article  Google Scholar 

  61. M. Jamil, E.N. Saridakis, J. Cosmol. Astropart. Phys. 09, 028 (2010)

    MathSciNet  Article  Google Scholar 

  62. A. Sheykhi, Phys. Rev. D 81, 023525 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Higher Education Commission, Islamabad, Pakistan for its financial support through the Indigenous Ph.D. 5000 Fellowship Program Batch-VII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharif, M., Jawad, A. Analysis of pilgrim dark energy models. Eur. Phys. J. C 73, 2382 (2013). https://doi.org/10.1140/epjc/s10052-013-2382-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2382-1

Keywords

  • Dark Energy
  • Event Horizon
  • Dark Energy Model
  • Cold Dark Matter
  • Agegraphic Dark Energy