Skip to main content
Log in

Dark radiation and dark matter coupled to holographic Ricci dark energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate a universe filled with interacting dark matter, holographic dark energy, and dark radiation for the spatially flat Friedmann–Robertson–Walker (FRW) spacetime. We use a linear interaction to reconstruct all the component energy densities in terms of the scale factor by directly solving the balance’s equations along with the source equation. We apply the χ 2 method to the observational Hubble data for constraining the cosmic parameters, contrast with the Union 2 sample of supernovae, and analyze the amount of dark energy in the radiation era. It turns out that our model exhibits an excess of dark energy in the recombination era whereas the stringent bound Ω x (z≃1010)<0.21 at big-bang nucleosynthesis is fulfilled. We find that the interaction provides a physical mechanism for alleviating the triple cosmic coincidence and this leads to \(\varOmega_{m0}/\varOmega_{x0} \simeq\varOmega_{r0}/\varOmega_{x0} \simeq\mathcal{O}(1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Wang, Dark Energy (Wiley-VCH, Berlin, 2010). ISBN 978-3-527-40941-9

    Book  Google Scholar 

  2. P. Ruiz-Lapuente (ed.), Dark Energy: Observational and Theoretical Approaches (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  3. D. Clowe et al., Astrophys. J. Lett. 648, L109 (2006)

    Article  ADS  Google Scholar 

  4. M. Bradac et al., Astrophys. J. 687, 959 (2008)

    Article  ADS  Google Scholar 

  5. R.W. Schnee, arXiv:1101.5205

  6. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  7. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  8. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  9. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  10. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  11. E. Jullo, P. Natarajan, J.P. Kneib, A. d’Aloisio, M. Limousin, J. Richard, C. Schimd, Science 329(5994), 924–927 (2010). arXiv:1008.4802

    Article  ADS  Google Scholar 

  12. L.P. Chimento, Phys. Rev. D 81, 043525 (2010)

    Article  ADS  Google Scholar 

  13. L.P. Chimento, M.G. Richarte, Phys. Rev. D 84, 123507 (2011)

    Article  ADS  Google Scholar 

  14. L.P. Chimento, M.G. Richarte, Phys. Rev. D 85, 127301 (2012)

    Article  ADS  Google Scholar 

  15. L.P. Chimento, M.G. Richarte, Phys. Rev. D 86, 103501 (2012)

    Article  ADS  Google Scholar 

  16. N. Arkani-Hamed, L.J. Hall, C. Kolda, H. Murayama, Phys. Rev. Lett. 85, 4434–4437 (2000)

    Article  ADS  Google Scholar 

  17. M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, J. Cosmol. Astropart. Phys. 1207, 053 (2012)

    Article  ADS  Google Scholar 

  18. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  19. E. Calabrese, D. Huterer, E.V. Linder, A. Melchiorri, L. Pagano, Phys. Rev. D 83, 123504 (2011)

    Article  ADS  Google Scholar 

  20. R.H. Cyburt, B.D. Fields, K.A. Olive, E. Skillman, Astropart. Phys. 23, 313 (2005)

    Article  ADS  Google Scholar 

  21. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005). astro-ph/0412269

    Article  ADS  Google Scholar 

  22. L. Samushia, B. Ratra, Astrophys. J. 650, L5 (2006)

    Article  ADS  Google Scholar 

  23. D. Stern et al., arXiv:0907.3149

  24. W.H. Press et al., Numerical Recipes in C (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  25. A.G. Riess et al., Astrophys. J. 699, 539 (2009). arXiv:0905.0695

    Article  ADS  Google Scholar 

  26. E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO]

  27. D.S. Sivia, J. Skilling, Data Analysis: a Bayesian Tutorial (Oxford University Press, London, 2006)

    MATH  Google Scholar 

  28. J. Lu, L. Xu, M. Liu, Phys. Lett. B 699, 246 (2011)

    Article  ADS  Google Scholar 

  29. M.I. Forte, M.G. Richarte, arXiv:1206.1073

  30. L.P. Chimento, M.I. Forte, M.G. Richarte, arXiv:1206.0179

  31. L.P. Chimento, M. Forte, M.G. Richarte, arXiv:1106.0781

  32. L.P. Chimento, M.G. Richarte, arXiv:1207.1121

  33. J.A.S. Lima, J.F. Jesus, R.C. Santos, M.S.S. Gill, arXiv:1205.4688

  34. G. Kremer, Gen. Relativ. Gravit. 39, 965–972 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

L.P.C. thanks the University of Buenos Aires under Project No. 20020100100147 and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) under Project PIP 114-200801-00328 for the partial support of this work during their different stages. M.G.R. is partially supported by Postdoctoral Fellowship programme of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín G. Richarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimento, L.P., Richarte, M.G. Dark radiation and dark matter coupled to holographic Ricci dark energy. Eur. Phys. J. C 73, 2352 (2013). https://doi.org/10.1140/epjc/s10052-013-2352-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2352-7

Keywords

Navigation