Skip to main content
Log in

Electroweak corrections to monojet production at the Tevatron and the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Single-jet production with missing transverse momentum is one of the most promising discovery channels for new physics at the LHC. In the Standard Model, Z+jet production with a Z-boson decay into neutrinos leads to this monojet signature. To improve the corresponding Standard Model predictions, we present the calculation of the full next-to-leading-order (NLO) electroweak corrections and a recalculation of the NLO QCD corrections to monojet production at the Tevatron and the LHC. We discuss the phenomenological impact on the total cross sections as well as on relevant differential distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263–272 (1998). hep-ph/9803315

    Article  ADS  Google Scholar 

  2. S. Karg, M. Krämer, Q. Li, D. Zeppenfeld, Phys. Rev. D 81, 094036 (2010). arXiv:0911.5095 [hep-ph]

    Article  ADS  Google Scholar 

  3. S. Karg et al., in PoS RADCOR 2009 (2010), p. 006

    Google Scholar 

  4. H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). hep-ph/0703260

    Article  ADS  Google Scholar 

  5. B. Betz et al., hep-ph/0606193

  6. T.G. Rizzo, Phys. Lett. B 665, 361–368 (2008). arXiv:0805.0281 [hep-ph]

    Article  ADS  Google Scholar 

  7. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 705, 294 (2011). arXiv:1106.5327 [hep-ex]

    Article  ADS  Google Scholar 

  8. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 201804 (2011). arXiv:1106.4775 [hep-ex]

    Article  ADS  Google Scholar 

  9. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1209, 094 (2012). arXiv:1206.5663 [hep-ex]

    Article  ADS  Google Scholar 

  10. L. Vacavant, I. Hinchliffe, J. Phys. G 27, 1839–1850 (2001)

    Article  ADS  Google Scholar 

  11. L. Benucci (For the CMS Collaboration), in PoS HCP2009 (2009), p. 065. arXiv:1001.5428 [physics.ins-det]

    Google Scholar 

  12. W.T. Giele, E.W.N. Glover, D.A. Kosower, Nucl. Phys. B 403, 633 (1993). hep-ph/9302225

    Article  ADS  Google Scholar 

  13. J.M. Campbell, R.K. Ellis, Phys. Rev. D 65, 113007 (2002). hep-ph/0202176

    Article  ADS  Google Scholar 

  14. J.J. van der Bij, E.W.N. Glover, Nucl. Phys. B 313, 237 (1989)

    Article  ADS  Google Scholar 

  15. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1101, 095 (2011). arXiv:1009.5594 [hep-ph]

    Article  ADS  Google Scholar 

  16. T. Becher, C. Lorentzen, M.D. Schwartz, Phys. Rev. Lett. 108, 012001 (2012). arXiv:1106.4310 [hep-ph]

    Article  ADS  Google Scholar 

  17. J.H. Kühn, A. Kulesza, S. Pozzorini, M. Schulze, Phys. Lett. B 609, 277 (2005). hep-ph/0408308

    Article  ADS  Google Scholar 

  18. J.H. Kühn, A. Kulesza, S. Pozzorini, M. Schulze, Nucl. Phys. B 727, 368 (2005). hep-ph/0507178

    Article  ADS  Google Scholar 

  19. P. Ciafaloni, D. Comelli, Phys. Lett. B 446, 278 (1999). hep-ph/9809321

    Article  ADS  Google Scholar 

  20. V.S. Fadin, L.N. Lipatov, A.D. Martin, M. Melles, Phys. Rev. D 61, 094002 (2000). hep-ph/9910338

    Article  ADS  Google Scholar 

  21. A. Denner, S. Pozzorini, Eur. Phys. J. C 18, 461 (2001). hep-ph/0010201

    Article  ADS  Google Scholar 

  22. W. Beenakker, A. Werthenbach, Nucl. Phys. B 630, 3 (2002). hep-ph/0112030

    Article  MATH  ADS  Google Scholar 

  23. A. Denner, M. Melles, S. Pozzorini, Nucl. Phys. B 662, 299 (2003). hep-ph/0301241

    Article  ADS  Google Scholar 

  24. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 032009 (2012). arXiv:1111.2690 [hep-ex]

    Article  ADS  Google Scholar 

  25. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 85, 032002 (2012). arXiv:1110.4973 [hep-ex]

    Article  ADS  Google Scholar 

  26. H. Ita et al., Phys. Rev. D 85, 031501 (2012). arXiv:1108.2229 [hep-ph]

    Article  ADS  Google Scholar 

  27. G. Watt, J. High Energy Phys. 1109, 069 (2011). arXiv:1106.5788 [hep-ph]

    Article  ADS  Google Scholar 

  28. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B 724, 247 (2005). hep-ph/0505042

    Article  ADS  Google Scholar 

  29. A. Denner, S. Dittmaier, Nucl. Phys. B, Proc. Suppl. 160, 22 (2006). hep-ph/0605312

    Article  ADS  Google Scholar 

  30. A. Denner, S. Dittmaier, T. Kasprzik, A. Mück, J. High Energy Phys. 1106, 069 (2011). arXiv:1103.0914 [hep-ph]

    Article  ADS  Google Scholar 

  31. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 39, 155 (2005). hep-ph/0411040

    Article  ADS  Google Scholar 

  32. J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990)

    Article  ADS  Google Scholar 

  33. H. Eck, J. Küblbeck, Guide to FeynArts 1.0. University of Würzburg (1992)

  34. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). hep-ph/0012260

    Article  MATH  ADS  Google Scholar 

  35. E. Accomando, A. Denner, C. Meier, Eur. Phys. J. C 47, 125 (2006). hep-ph/0509234

    Article  ADS  Google Scholar 

  36. T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). hep-ph/9807565

    Article  ADS  Google Scholar 

  37. A. Denner, S. Dittmaier, T. Kasprzik, A. Mück, J. High Energy Phys. 0908, 075 (2009). arXiv:0906.1656 [hep-ph]

    Article  ADS  Google Scholar 

  38. G. Passarino, M. Veltman, Nucl. Phys. B 160, 151 (1979)

    Article  ADS  Google Scholar 

  39. A. Denner, S. Dittmaier, Nucl. Phys. B 658, 175 (2003). hep-ph/0212259

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. A. Denner, S. Dittmaier, Nucl. Phys. B 734, 62 (2006). hep-ph/0509141

    Article  MATH  ADS  Google Scholar 

  41. G. ’t Hooft, M. Veltman, Nucl. Phys. B 153, 365 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  42. W. Beenakker, A. Denner, Nucl. Phys. B 338, 349 (1990)

    Article  ADS  Google Scholar 

  43. A. Denner, S. Dittmaier, Nucl. Phys. B 844, 199 (2011). arXiv:1005.2076 [hep-ph]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. S. Dittmaier, Nucl. Phys. B 565, 69 (2000). hep-ph/9904440

    Article  ADS  Google Scholar 

  45. S. Dittmaier, A. Kabelschacht, T. Kasprzik, Nucl. Phys. B 800, 146 (2008). arXiv:0802.1405 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  46. A. Denner, S. Dittmaier, T. Gehrmann, C. Kurz, Nucl. Phys. B 836, 37 (2010). arXiv:1003.0986 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  47. E.W.N. Glover, A.G. Morgan, Z. Phys. C 62, 311 (1994)

    Article  ADS  Google Scholar 

  48. D. Buskulic et al. (ALEPH Collaboration), Z. Phys. C 69, 365 (1996)

    Article  Google Scholar 

  49. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  50. D.Y. Bardin, A. Leike, T. Riemann, M. Sachwitz, Phys. Lett. B 206, 539 (1988)

    Article  ADS  Google Scholar 

  51. A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  52. M.R. Whalley, D. Bourilkov, R.C. Group, in HERA and the LHC, ed. by A. de Roeck, H. Jung, Geneva, 2005, p. 575. CERN-2005-014. hep-ph/0508110

    Google Scholar 

  53. C.W. Bauer, B.O. Lange, arXiv:0905.4739 [hep-ph]

  54. G.C. Blazey et al., in QCD and Weak Boson Physics in Run II, ed. by U. Baur, R.K. Ellis, D. Zeppenfeld, Fermilab, 2000, p. 47. Fermilab-Pub-00/297. hep-ex/0005012

    Google Scholar 

  55. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph]

    Article  ADS  Google Scholar 

  56. J.H. Kühn, A. Kulesza, S. Pozzorini, M. Schulze, J. High Energy Phys. 0603, 059 (2006). hep-ph/0508253

    Article  Google Scholar 

  57. A. Gehrmann-De Ridder, T. Gehrmann, M. Ritzmann, J. High Energy Phys. 1210, 047 (2012). arXiv:1207.5779 [hep-ph]

    Article  ADS  Google Scholar 

  58. T. Gehrmann, L. Tancredi, J. High Energy Phys. 1202, 004 (2012). arXiv:1112.1531

    Article  ADS  Google Scholar 

  59. A. Daleo, T. Gehrmann, D. Maitre, J. High Energy Phys. 0704, 016 (2007). hep-ph/0612257

    Article  ADS  Google Scholar 

  60. L.W. Garland et al., Nucl. Phys. B 627, 107 (2002). hep-ph/0112081

    Article  ADS  Google Scholar 

  61. L.W. Garland et al., Nucl. Phys. B 642, 227 (2002). hep-ph/0206067

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Gottfried Wilhelm Leibniz programme of the Deutsche Forschungsgemeinschaft (DFG) and by the DFG Sonderforschungsbereich/Transregio 9 “Computergestützte Theoretische Teilchenphysik”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kasprzik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denner, A., Dittmaier, S., Kasprzik, T. et al. Electroweak corrections to monojet production at the Tevatron and the LHC. Eur. Phys. J. C 73, 2297 (2013). https://doi.org/10.1140/epjc/s10052-013-2297-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2297-x

Keywords

Navigation