Skip to main content
Log in

An effective QCD Lagrangian in the presence of an axial chemical potential

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the low energy realization of QCD in terms of mesons when an axial chemical potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate that the presence of an axial charge has profound consequences on meson physics. The most notorious effect is the appearance of an explicit source of parity breaking. The eigenstates of strong interactions do not have a definite parity and interactions that would otherwise be forbidden compete with the familiar ones. In this work we focus on scalars and pseudoscalars that are described by a generalized linear sigma model. We comment briefly on the screening role of axial vectors in formation of effective axial charge and on the possible experimental relevance of our results, whose consequences may have been already seen at RHIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983)

    Article  ADS  Google Scholar 

  2. C. Vafa, E. Witten, Phys. Rev. Lett. 53, 535 (1984)

    Article  ADS  Google Scholar 

  3. S. Nussinov, Phys. Rev. Lett. 52, 966 (1984)

    Article  ADS  Google Scholar 

  4. D. Espriu, M. Gross, J.F. Wheater, Phys. Lett. B 146, 67 (1984)

    Article  ADS  Google Scholar 

  5. S. Nussinov, M. Lambert, Phys. Rep. 362, 193 (2002)

    Article  ADS  MATH  Google Scholar 

  6. A.A. Andrianov, D. Espriu, Phys. Lett. B 663, 450 (2008)

    Article  ADS  Google Scholar 

  7. A.A. Andrianov, V.A. Andrianov, D. Espriu, Phys. Lett. B 678, 416 (2009)

    Article  ADS  Google Scholar 

  8. M.P. Lombardo, in PoS CPOD 2006 (2006). hep-lat/0612017

    Google Scholar 

  9. M.A. Stephanov, in PoS LAT (2006), p. 024. hep-lat/0701002

    Google Scholar 

  10. D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 86, 592 (2001)

    Article  ADS  Google Scholar 

  11. D.T. Son, M.A. Stephanov, Phys. At. Nucl. 64, 834 (2001)

    Article  Google Scholar 

  12. K. Splittorff, D.T. Son, M.A. Stephanov, Phys. Rev. D 64, 016003 (2001)

    Article  ADS  Google Scholar 

  13. J.B. Kogut, D. Toublan, Phys. Rev. D 64, 034007 (2001)

    Article  ADS  Google Scholar 

  14. D. Kharzeev, R.D. Pisarski, M.H.G. Tytgat, Phys. Rev. Lett. 81, 512 (1998)

    Article  ADS  Google Scholar 

  15. D. Kharzeev, Phys. Lett. B 633, 260 (2006)

    Article  ADS  Google Scholar 

  16. D. Kharzeev, Ann. Phys. 325, 205 (2010)

    Article  ADS  MATH  Google Scholar 

  17. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  18. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  19. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Nucl. Phys. A 836, 311 (2010)

    Article  ADS  Google Scholar 

  20. A.M. Polyakov, Nucl. Phys. B 120, 429 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Kharzeev, A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007)

    Article  ADS  Google Scholar 

  22. P.V. Buividovich, M.N. Chernodub, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D 80, 054503 (2009)

    Article  ADS  Google Scholar 

  23. P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T. Kalaydzhyan, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. Lett. 105, 132001 (2010)

    Article  ADS  Google Scholar 

  24. M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou, in PoS LAT 2009 (2009), p. 181. arXiv:0911.1348 [hep-lat]

    Google Scholar 

  25. P.V. Buividovich, T. Kalaydzhyan, M.I. Polikarpov, arXiv:1111.6733v2 [hep-lat]

  26. B.I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 251601 (2009)

    Article  ADS  Google Scholar 

  27. S.A. Voloshin, J. Phys. Conf. Ser. 230, 012021 (2010)

    Article  ADS  Google Scholar 

  28. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  29. J. Boguta, Phys. Lett. B 120, 34 (1983)

    Article  ADS  Google Scholar 

  30. O. Kaymakcalan, J. Schechter, Phys. Rev. D 31, 1109 (1985)

    Article  ADS  Google Scholar 

  31. R.D. Pisarski, arXiv:hep-ph/9503330

  32. A.H. Fariborz, R. Jora, J. Schechter, Phys. Rev. D 72, 034001 (2005)

    Article  ADS  Google Scholar 

  33. A.H. Fariborz, R. Jora, J. Schechter, Phys. Rev. D 77, 034006 (2008)

    Article  ADS  Google Scholar 

  34. J.T. Lenaghan, D.H. Rischke, J. Schaffner-Bielich, Phys. Rev. D 62, 085008 (2000)

    Article  ADS  Google Scholar 

  35. D. Parganlija, F. Giacosa, D.H. Rischke, Phys. Rev. D 82, 054024 (2010)

    Article  ADS  Google Scholar 

  36. A.A. Andrianov, V.A. Andrianov, D. Espriu, X. Planells, Phys. Lett. B 710, 230 (2012)

    Article  ADS  Google Scholar 

  37. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 16, 15 (1997)

    Google Scholar 

  38. M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164, 217 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Harada, K. Yamawaki, Phys. Rep. 381, 1 (2003)

    Article  ADS  Google Scholar 

  40. A.A. Andrianov, V.A. Andrianov, D. Espriu, X. Planells, in PoS QFTHEP2010 (2010), p. 053

    Google Scholar 

  41. A.A. Andrianov, V.A. Andrianov, D. Espriu, X. Planells, AIP Conf. Proc. 1343, 450 (2011)

    Article  ADS  Google Scholar 

  42. K.O. Lapidus, V.M. Emel’yanov, Phys. Part. Nucl. 40, 29 (2009)

    Article  Google Scholar 

  43. I. Tserruya, Electromagnetic probes. arXiv:0903.0415 [nucl-ex]

  44. R. Arnaldi et al. (NA60 Collaboration), Eur. Phys. J. C 61, 711 (2009)

    Article  ADS  Google Scholar 

  45. A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 81, 034911 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from projects FPA2010-20807, 2009SGR502, CPAN (Consolider CSD2007-00042). A.A. Andrianov is also supported by Grant RFBR 13-02-00127. X. Planells acknowledges the support from Grant FPU AP2009-1855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Planells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrianov, A.A., Espriu, D. & Planells, X. An effective QCD Lagrangian in the presence of an axial chemical potential. Eur. Phys. J. C 73, 2294 (2013). https://doi.org/10.1140/epjc/s10052-013-2294-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2294-0

Keywords

Navigation