Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Holographic dark energy in the DGP model

  • 144 Accesses

Abstract

The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: ϵ=±1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

  2. 2.

    P.M. Garnavich et al., Astrophys. J. 493, L53 (1998)

  3. 3.

    A.G. Riess et al., Astron. J. 116, 1009 (1998)

  4. 4.

    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)

  5. 5.

    A.G. Riess, Astrophys. J. 607, 665 (2004)

  6. 6.

    P.J.E. Peebles, B. Ratra, Mod. Phys. 75

  7. 7.

    G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)

  8. 8.

    C. Deffayet, Phys. Lett. B 502, 199 (2001)

  9. 9.

    C. Deffayet, G.R. Dvali, G. Gabadadze, Phys. Rev. D 65, 044023 (2002)

  10. 10.

    K. Koyama, Gen. Relativ. Gravit. 40, 421 (2008)

  11. 11.

    M. Li, X. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011). arXiv:1103.5870

  12. 12.

    K. Hirano, Z. Komiya Gen, Gen. Relativ. Gravit. 42, 2751 (2010). arXiv:0912.4950 [astroph.CO]

  13. 13.

    G. Dvali, M.S. Turner, arXiv:astro-ph/0301510

  14. 14.

    K. Koyama, Class. Quantum Gravity 24, R231 (2007). arXiv:0709.2399 [hep-th]

  15. 15.

    A. Lue, G.D. Starkman, Phys. Rev. D 70, 101501 (2004). arXiv:astro-ph/0408246

  16. 16.

    V. Sahni, Y. Shtanov, J. Cosmol. Astropart. Phys. 0311, 014 (2003). arXiv:astro-ph/0202346

  17. 17.

    R. Lazkoz, R. Maartens, E. Majerotto, Phys. Rev. D 74, 083510 (2006). arXiv:astro-ph/0605701

  18. 18.

    M. Bouhmadi-Lopez, J. Cosmol. Astropart. Phys. 0911, 011 (2009)

  19. 19.

    M. Bouhmadi-Lopez, L. Chimento, Phys. Rev. D 82, 103506 (2010)

  20. 20.

    A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999). arXiv:hep-th/9803132

  21. 21.

    S.D.H. Hsu, Phys. Lett. B 594, 13 (2004). arXiv:hep-th/0403052

  22. 22.

    M. Li, Phys. Lett. B 603, 1 (2004). arXiv:hep-th/0403127

  23. 23.

    P.F. González-Díaz, Phys. Rev. D 27, 3042 (1983)

  24. 24.

    G. ’t Hooft, arXiv:gr-qc/9310026

  25. 25.

    L. Susskind, J. Math. Phys. 36, 6377 (1995). arXiv:hep-th/9409089

  26. 26.

    E.N. Saridakis, J. Cosmol. Astropart. Phys. 04, 020 (2008)

  27. 27.

    X. Wu, R. Cai, Z. Zhu, Phys. Rev. D 77, 043502 (2008). arXiv:0712.3604 [astro-ph]

  28. 28.

    Y. Gong, T. Li, Phys. Lett. B 683, 241 (2010)

  29. 29.

    D. Liu, H. Wang, B. Yang, Phys. Lett. B 694, 6–9 (2010). arXiv:1009.3776 [astro-ph.CO]

  30. 30.

    M. Bouhmadi-Lopez, A. Errahmani, T. Ouali, Phys. Rev. D 84, 083508 (2011)

  31. 31.

    M.-H. Belkacemi, M. Bouhmadi-Lopez, A. Errahmani, T. Ouali, arXiv:1112.5836 [gr-qc]

  32. 32.

    N. Radicella, D. Pavón, J. Cosmol. Astropart. Phys. 10, 005 (2010)

  33. 33.

    Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 0408, 13 (2004)

  34. 34.

    R. Horvat, D. Pavon, Phys. Lett. B 653, 373 (2007)

  35. 35.

    Q.G. Huang, Y.G. Gong, J. Cosmol. Astropart. Phys. 0408, 006 (2004)

  36. 36.

    J. Cui, X. Zhang, arXiv:1005.3587 [astro-ph.CO]

  37. 37.

    M. Li, X. Li, S. Wang, Y. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0912, 014 (2009). arXiv:0910.3855

  38. 38.

    M. Li, X. Li, S. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0906, 036 (2009). arXiv:0904.0928

  39. 39.

    X. Zhang, arXiv:0909.4940 [gr-qc]

  40. 40.

    L. Xu, arXiv:0907.1709 [astro-ph.CO]

  41. 41.

    H. Wei, arXiv:0902.2030 [gr-qc]

  42. 42.

    S. Wu, P. Zhang, G. Yang, arXiv:0809.1503 [astro-ph]

  43. 43.

    G. Hinshaw et al., arXiv:0803.0732 [astro-ph]

  44. 44.

    N. Suzuki et al., Astrophys. J. 746, 85 (2012)

Download references

Acknowledgements

NC and SL acknowledge the hospitality of the Physics Department of Universidad de La Frontera where part of this work was done. SL and FP acknowledge the hospitality of the Physics Department of Universidad de Santiago de Chile. We acknowledge the support to this research by CONICYT through grants Nos. 1110840 (NC) and 1110076 (SL). This work was also supported from DIUFRO DI10-0009, of Dirección de Investigación y Desarrollo, Universidad de La Frontera (FP) and DIR01.11,037.334/2011, VRIEA, Pontificia Universidad Católica de Valparaíso (SL). The authors acknowledge the suggestions of an anonymous referee in order to improve the presentation of the results of our paper.

Author information

Correspondence to Norman Cruz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cruz, N., Lepe, S., Peña, F. et al. Holographic dark energy in the DGP model. Eur. Phys. J. C 72, 2162 (2012). https://doi.org/10.1140/epjc/s10052-012-2162-3

Download citation

Keywords

  • Dark Matter
  • Dark Energy
  • Hubble Parameter
  • Holographic Dark Energy
  • Dark Energy Density