Skip to main content
Log in

Discriminating Z′ from anomalous trilinear gauge coupling signatures in e + e W + W at ILC with polarized beams

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

New heavy neutral gauge bosons Z′ are predicted by many models of physics beyond the Standard Model. It is quite possible that Z′s are heavy enough to lie beyond the discovery reach of the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z′ exchanges may emerge at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We discuss in this context the foreseeable sensitivity to Z′s of W ±-pair production cross sections at the e + e International Linear Collider (ILC), especially as regards the potential of distinguishing observable effects of the Z′ from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to the same or similar new physics experimental signatures at the ILC. The sensitivity of the ILC for probing the ZZ′ mixing and its capability to distinguish these two new physics scenarios is substantially enhanced when the polarization of the initial beams and the produced W ± bosons are considered. A model-independent analysis of the Z′ effects in the process e + e W + W allows to differentiate the full class of vector Z′ models from those with anomalous trilinear gauge couplings, with one notable exception: the sequential SM (SSM)-like models can in this process not be distinguished from anomalous gauge couplings. Results of model-dependent analysis of a specific Z′ are expressed in terms of discovery and identification reaches on the ZZ′ mixing angle and the Z′ mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Actually, this should be necessary also in the case of direct discovery, because different NP models may in principle produce the same peaks at the same mass so that, for example, for model identification some angular analyses must be applied, see [11] and references therein.

  2. Note that M Z =M 1M, where M 1 refers to the mass eigenstate.

References

  1. P. Langacker, Rev. Mod. Phys. 81, 1199–1228 (2009). arXiv:0801.1345 [hep-ph]

    Article  ADS  Google Scholar 

  2. T.G. Rizzo, hep-ph/0610104

  3. A. Leike, S. Riemann, Z. Phys. C 75, 341 (1997). hep-ph/9607306

    Article  Google Scholar 

  4. A. Leike, Phys. Rep. 317, 143–250 (1999). hep-ph/9805494

    Article  ADS  Google Scholar 

  5. S. Riemann, eConf C 050318, 0303 (2005). hep-ph/0508136

    Google Scholar 

  6. J.L. Hewett, T.G. Rizzo, Phys. Rep. 183, 193 (1989)

    Article  ADS  Google Scholar 

  7. J. Erler, P. Langacker, S. Munir, E. Rojas, J. High Energy Phys. 0908, 017 (2009). arXiv:0906.2435 [hep-ph]

    Article  ADS  Google Scholar 

  8. P. Langacker, arXiv:0911.4294 [hep-ph]

  9. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 714, 158–179 (2012). arXiv:1206.1849 [hep-ex]

    Article  ADS  Google Scholar 

  10. ATLAS Collaboration, Note ATLAS-CONF-2012-007 (2012)

  11. P. Osland, A.A. Pankov, A.V. Tsytrinov, N. Paver, Phys. Rev. D 79, 115021 (2009). arXiv:0904.4857 [hep-ph]

    Article  ADS  Google Scholar 

  12. J. Brau et al. (ILC Collaboration), arXiv:0712.1950 [physics.acc-ph]

  13. G. Aarons et al. (ILC Collaboration), arXiv:0709.1893 [hep-ph]

  14. A.A. Pankov, N. Paver, Phys. Lett. B 272, 425–430 (1991)

    Article  ADS  Google Scholar 

  15. A.A. Pankov, N. Paver, Phys. Rev. D 48, 63–77 (1993)

    Article  ADS  Google Scholar 

  16. A.A. Pankov, N. Paver, Phys. Lett. B 324, 224–230 (1994)

    Article  ADS  Google Scholar 

  17. A.A. Pankov, N. Paver, C. Verzegnassi, Int. J. Mod. Phys. A 13, 1629–1650 (1998). hep-ph/9701359

    Article  ADS  Google Scholar 

  18. D.-W. Jung, K.Y. Lee, H.S. Song, C. Yu, J. Korean Phys. Soc. 36, 258–264 (2000). hep-ph/9905353

    Google Scholar 

  19. B. Ananthanarayan, M. Patra, P. Poulose, J. High Energy Phys. 1102, 043 (2011). arXiv:1012.3566 [hep-ph]

    Article  ADS  Google Scholar 

  20. G. Gounaris, J.L. Kneur, J. Layssac, G. Moultaka, F.M. Renard, D. Schildknecht, in Proceedings of the Workshop e + e Collisions at 500 GeV: The Physics Potential, ed. by P.M. Zerwas (1992), p. 735. DESY 92-123B

    Google Scholar 

  21. G. Gounaris, J. Layssac, G. Moultaka, F.M. Renard, Int. J. Mod. Phys. A 8, 3285–3320 (1993)

    Article  ADS  Google Scholar 

  22. G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A.A. Babich, V. Bharadwaj, D. Barber, A. Bartl et al., Phys. Rep. 460, 131–243 (2008). hep-ph/0507011

    Article  ADS  Google Scholar 

  23. P. Osland, A.A. Pankov, A.V. Tsytrinov, Eur. Phys. J. C 67, 191–204 (2010). arXiv:0912.2806 [hep-ph]

    Article  ADS  Google Scholar 

  24. P. Langacker, M.-x. Luo, Phys. Rev. D 45, 278 (1992)

    Article  ADS  Google Scholar 

  25. K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987)

    Article  ADS  Google Scholar 

  26. M.S. Bilenky, J.L. Kneur, F.M. Renard, D. Schildknecht, Nucl. Phys. B 409, 22 (1993)

    Article  ADS  Google Scholar 

  27. M.S. Bilenky, J.L. Kneur, F.M. Renard, D. Schildknecht, Nucl. Phys. B 419, 240 (1994). hep-ph/9312202

    Article  ADS  Google Scholar 

  28. K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  29. J. Fleischer, K. Kolodziej, F. Jegerlehner, Phys. Rev. D 47, 830 (1993)

    Article  ADS  Google Scholar 

  30. W. Beenakker, A. Denner, Int. J. Mod. Phys. A 9, 4837 (1994)

    Article  ADS  Google Scholar 

  31. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Phys. Lett. B 612, 223 (2005). [Erratum-ibid. B 704, 667 (2011)]. hep-ph/0502063

    Article  ADS  Google Scholar 

  32. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B 724, 247 (2005). [Erratum-ibid. B 854, 504 (2012)]. hep-ph/0505042

    Article  ADS  Google Scholar 

  33. W. Beenakker, F.A. Berends, T. Sack, Nucl. Phys. B 367, 287 (1991)

    Article  ADS  Google Scholar 

  34. W. Beenakker, K. Kolodziej, T. Sack, Phys. Lett. B 258, 469 (1991)

    Article  ADS  Google Scholar 

  35. A.A. Pankov, N. Paver, A.V. Tsytrinov, Phys. Rev. D 73, 115005 (2006). arXiv:hep-ph/0512131

    Article  ADS  Google Scholar 

  36. G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 585, 223 (2004)

    Article  ADS  Google Scholar 

  37. P. Achard et al. (L3 Collaboration), Phys. Lett. B 557, 147 (2003)

    Article  ADS  Google Scholar 

  38. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 54, 345 (2008). arXiv:0801.1235 [hep-ex]

    Article  ADS  Google Scholar 

  39. J.P. Couchman, Ph.D. thesis, University College London, 2000

Download references

Acknowledgements

It is a pleasure to thank S. Dittmaier for valuable comments on the importance of the radiative corrections. This research has been partially supported by the Abdus Salam ICTP under the TRIL and STEP Programmes and the Belarusian Republican Foundation for Fundamental Research. The work of AAP has been partially supported by the SFB 676 Programme of the Department of Physics, University of Hamburg. The work of PO has been supported by the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Osland.

Appendix: Helicity amplitudes

Appendix: Helicity amplitudes

In this appendix, we collect the helicity amplitudes for the different initial (e + e ) and final-state (W + W ) polarizations. In Table 5 we quote the amplitudes for the case of Anomalous Gauge Couplings [20, 21], whereas in Table 6 we give the corresponding results for the case of a Z′.

Table 5 Helicity amplitudes for e + e W + W in the presence of AGC [20, 21]. To obtain the amplitude F λττ(s,cosθ) for definite helicity λ=±1/2 and definite spin orientations τ(W ) and τ′(W +) of the W ±, the elements in the corresponding column have to be multiplied by the common factor on top of the column. Subsequently, the elements in a specific column have to be multiplied by the corresponding elements in the first column and the sum over all elements is to be taken. In the last column, the amplitude for the case of τ=±1, τ′=0 is obtained by replacing τ′ by −τ in the elements of this last column
Table 6 Helicity amplitudes for e + e γ,Z 1,Z 2W + W

Note that the quantity δ Z appearing in Table 5 is different from, but plays a role similar to that of Δ Z entering in the parametrization of Z′ effects. Furthermore, in analogy with the Δ γ which enters the description of Z′ effects, one could imagine a factor (1+δ γ ) multiplying the photon-exchange amplitudes in Table 5. Such a term could be induced by dimension-8 operators, but δ γ would have to vanish as s→0, due to gauge invariance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, V.V., Moortgat-Pick, G., Osland, P. et al. Discriminating Z′ from anomalous trilinear gauge coupling signatures in e + e W + W at ILC with polarized beams. Eur. Phys. J. C 72, 2147 (2012). https://doi.org/10.1140/epjc/s10052-012-2147-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2147-2

Keywords

Navigation