Skip to main content
Log in

Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab=2A GeV to \(\sqrt{s_{NN}}=200~\mbox{GeV}\) from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low \(\sqrt{s_{NN}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675–678 (2006)

    Article  ADS  Google Scholar 

  2. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo (Wuppertal-Budapest Collaboration), J. High Energy Phys. 1009, 073 (2010)

    Article  ADS  Google Scholar 

  3. Z. Fodor, S.D. Katz, J. High Energy Phys. 0203, 014 (2002)

    Article  ADS  Google Scholar 

  4. C. Schmidt (for RBC-Bielefeld Collaboration), J. Phys. G 35, 104093 (2008)

    Article  ADS  Google Scholar 

  5. C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt, Phys. Rev. D 68, 014507 (2003)

    Article  ADS  Google Scholar 

  6. M. Cheng et al., Phys. Rev. D 81, 054504 (2010)

    Article  ADS  Google Scholar 

  7. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998)

    Article  ADS  Google Scholar 

  8. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999)

    Article  ADS  Google Scholar 

  9. V. Koch, arXiv:0810.2520 [nucl-th], and references therein

  10. S. Jeon, V. Koch, Phys. Rev. Lett. 83, 5435 (1999)

    Article  ADS  Google Scholar 

  11. S. Jeon, V. Koch, Phys. Rev. Lett. 85, 2076 (2000)

    Article  ADS  Google Scholar 

  12. C. Alt et al. (NA49 Collaboration), Phys. Rev. C 79, 044910 (2009)

    Article  ADS  Google Scholar 

  13. V. Koch, A. Majumder, J. Randrup, Phys. Rev. Lett. 95, 182301 (2005)

    Article  ADS  Google Scholar 

  14. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009)

    Article  ADS  Google Scholar 

  15. M. Asakawa, S. Ejiri, M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009)

    Article  ADS  Google Scholar 

  16. M.A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

    Article  ADS  Google Scholar 

  17. B. Stokic, B. Friman, K. Redlich, Phys. Lett. B 673, 192 (2009)

    Article  ADS  Google Scholar 

  18. V. Skokov, B. Friman, K. Redlich, Phys. Rev. C 83, 054904 (2011)

    Article  ADS  Google Scholar 

  19. F. Karsch, K. Redlich, Phys. Lett. B 695, 136 (2011)

    Article  ADS  Google Scholar 

  20. M.M. Aggarwal et al. (STAR Collaboration), Phys. Rev. Lett. 105, 022302 (2010)

    Article  ADS  Google Scholar 

  21. X. Luo, B. Mohanty, H.G. Ritter, N. Xu, Phys. At. Nucl. 75, 676 (2012). arXiv:1105.5049 [nucl-ex]

    Article  Google Scholar 

  22. Y. Hatta, M.A. Stephanov, Phys. Rev. Lett. 91, 102003 (2003) [Ibid., (Erratum), 91, 129901, 2003]

    Article  ADS  Google Scholar 

  23. M. Bleicher et al., J. Phys. G 25, 1859 (1999)

    Article  ADS  Google Scholar 

  24. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    Article  ADS  Google Scholar 

  25. H. Petersen, M. Bleicher, S.A. Bass, H. Stocker, arXiv:0805.0567 [hep-ph]

  26. M. Bleicher et al., Phys. Lett. B 435, 9 (1998)

    Article  ADS  Google Scholar 

  27. M. Bleicher, S. Jeon, V. Koch, Phys. Rev. C 62, 061902 (2000)

    Article  ADS  Google Scholar 

  28. V.P. Konchakovski, S. Haussler, M.I. Gorenstein, E.L. Bratkovskaya, M. Bleicher, H. Stoecker, Phys. Rev. C 73, 034902 (2006)

    Article  ADS  Google Scholar 

  29. Y. Zhou, S.S. Shi, K. Xiao, K.J. Wu, F. Liu, Phys. Rev. C 82, 014905 (2010)

    Article  ADS  Google Scholar 

  30. X.F. Luo, B. Mohanty, H.G. Ritter, N. Xu, J. Phys. G 37, 094061 (2010). arXiv:1001.2847 [nucl-ex]

    Article  ADS  Google Scholar 

  31. V.V. Begun, M. Gazdzicki, M.I. Gorenstein, O.S. Zozulya, Phys. Rev. C 70, 034901 (2004)

    Article  ADS  Google Scholar 

  32. J. Cleymans, K. Redlich, L. Turko, Phys. Rev. C 71, 047902 (2005)

    Article  ADS  Google Scholar 

  33. M. Nahrgang, T. Schuster, M. Mitrovski, R. Stock, M. Bleicher, J. Phys. G 38, 124150 (2011)

    Article  ADS  Google Scholar 

  34. H. Sorge, H. Stoecker, W. Greiner, Nucl. Phys. A 498, 567C (1989)

    Article  ADS  Google Scholar 

  35. M. Gyulassy, X.N. Wang, Comput. Phys. Commun. 83, 307 (1994)

    Article  ADS  Google Scholar 

  36. A. Bzdak, V. Koch, V. Skokov, arXiv:1203.4529 [hep-ph]

  37. M. Cheng et al., Phys. Rev. D 79, 074505 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors like to thank Nu Xu and Michael Hauer for fruitful discussions. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), as well as by the Hessian LOEWE initiative through HIC for FAIR. We are also grateful to the Center for Scientific Computing (CSC) at Frankfurt for providing the computing resources. M. Nahrgang gratefully acknowledges financial support from the Stiftung Polytechnische Gesellschaft Frankfurt and T. Schuster is grateful for support from the Helmholtz Research School on Quark Matter Studies. Moreover, this work was supported by GSI, BMBF and DESY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Nahrgang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahrgang, M., Schuster, T., Mitrovski, M. et al. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach. Eur. Phys. J. C 72, 2143 (2012). https://doi.org/10.1140/epjc/s10052-012-2143-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2143-6

Keywords

Navigation