Skip to main content
Log in

Neutrino masses and LFV from minimal breaking of U(3)5 and U(2)5 flavor symmetries

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We analyze neutrino masses and Lepton Flavor Violation (LFV) in charged leptons with a minimal ansatz about the breaking of the U(3)5 flavor symmetry, consistent with the U(2)3 breaking pattern of quark Yukawa couplings, in the context of supersymmetry. Neutrino masses are expected to be almost degenerate, close to present bounds from cosmology and 0νββ experiments. We also predict s 13s 23|V td |/|V ts |≈0.16, in perfect agreement with the recent Daya-Bay result. For slepton masses below 1 TeV, barring accidental cancellations, we expect \(\mathcal{B}(\mu\to e \gamma) > 10^{-13}\) and \(\mathcal {B}(\tau\to\mu\gamma) > 10^{-9}\), within the reach of future experimental searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1.  We denote in bold U(3) vectors and representations.

  2. This has no practical implications if we consider the Yukawa sector alone, where there in no preferred O(2) subgroup of U(2) l in the limit V→0.

  3. For quarks, it was shown in [11] that the CKM phase is entirely defined by the phases in the ΔY f spurions. Thus, the conclusions for the quark sector would remain unchanged.

  4. The physical phase appearing in the CKM matrix can be determined in terms of α d α u  [11], but we cannot disentangle α d and α u without extra theoretical assumptions.

  5. Although the global fit of Ref. [24] does not include the recent Daya-Bay result [23], the resulting value for θ 13 turns out to be in good agreement with the direct determination in Eq. (5). Similar results for all the neutrino parameters but for θ 13 can be found also in Ref. [25].

  6. The WMAP bound of [26] for the sum of neutrino masses varies between 1.3 eV (WMAP-only) and 0.58 (WMAP + Baryon Acoustic Oscillations + Hubble constant measurements).

  7.  In the diagonalization process we discard results with tachyonic sleptons or charged LSPs. We also take into account the approximate LEP bounds on chargino, stau and sneutrino masses [34].

References

  1. R.S. Chivukula, H. Georgi, Phys. Lett. B 188, 99 (1987)

    Article  ADS  Google Scholar 

  2. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155–187 (2002). arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  3. S. Dimopoulos, G.F. Giudice, Phys. Lett. B 357, 573 (1995). arXiv:hep-ph/9507282

    Article  ADS  Google Scholar 

  4. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Lett. B 388, 588 (1996). arXiv:hep-ph/9607394

    Article  ADS  Google Scholar 

  5. M. Papucci, J.T. Ruderman, A. Weiler, arXiv:1110.6926

  6. B.C. Allanach, B. Gripaios, arXiv:1202.6616

  7. N. Craig, D. Green, A. Katz, J. High Energy Phys. 1107, 045 (2011). arXiv:1103.3708

    Article  ADS  Google Scholar 

  8. A. Delgado, M. Quiros, Phys. Rev. D 85, 015001 (2012). arXiv:1111.0528

    Article  ADS  Google Scholar 

  9. G. Larsen, Y. Nomura, H.L.L. Roberts, arXiv:1202.6339

  10. N. Craig, S. Dimopoulos, T. Gherghetta, arXiv:1203.0572

  11. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D.M. Straub, Eur. Phys. J. C 71, 1725 (2011). arXiv:1105.2296

    Article  ADS  Google Scholar 

  12. M. Dine, R.G. Leigh, A. Kagan, Phys. Rev. D 48, 4269 (1993). arXiv:hep-ph/9304299

    Article  ADS  Google Scholar 

  13. A. Pomarol, D. Tommasini, Nucl. Phys. B 466, 3 (1996). arXiv:hep-ph/9507462

    Article  ADS  Google Scholar 

  14. R. Barbieri, G.R. Dvali, L.J. Hall, Phys. Lett. B 377, 76 (1996). arXiv:hep-ph/9512388

    Article  ADS  Google Scholar 

  15. R. Barbieri, L.J. Hall, A. Romanino, Phys. Lett. B 401, 47 (1997). arXiv:hep-ph/9702315

    Article  ADS  Google Scholar 

  16. R. Barbieri, P. Campli, G. Isidori, F. Sala, D.M. Straub, Eur. Phys. J. C 71, 1812 (2011). arXiv:1108.5125

    Article  ADS  Google Scholar 

  17. A. Crivellin, L. Hofer, U. Nierste, arXiv:1111.0246

  18. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, arXiv:1203.4218

  19. M. Redi, arXiv:1203.4220

  20. S.L. Glashow, arXiv:1106.3319

  21. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979)

    Article  ADS  Google Scholar 

  22. K. Nakamura et al. (PDG Collaboration), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  23. F.P. An et al. (DAYA-BAY Collaboration), arXiv:1203.1669

  24. T. Schwetz, M. Tortola, J.W.F. Valle, New J. Phys. 13, 109401 (2011). arXiv:1108.1376

    Article  ADS  Google Scholar 

  25. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, Phys. Rev. D 84, 053007 (2011). arXiv:1106.6028

    Article  ADS  Google Scholar 

  26. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]

    Article  ADS  Google Scholar 

  27. J.J. Gomez-Cadenas, J. Martin-Albo, M. Sorel, P. Ferrario, F. Monrabal, J. Munoz-Vidal, P. Novella, A. Poves, J. Cosmol. Astropart. Phys. 1106, 007 (2011). arXiv:1010.5112

    Article  ADS  Google Scholar 

  28. S. Plaszczynski, PoS IDM 2010, 066 (2011). arXiv:1012.2215 [astro-ph.CO]

    Google Scholar 

  29. The KamLAND-Zen Collaboration, arXiv:1201.4664

  30. C. Arnaboldi et al. (CUORICINO Collaboration), Phys. Rev. C 78, 035502 (2008). arXiv:0802.3439

    Article  ADS  Google Scholar 

  31. R. Arnold et al. (NEMO Collaboration), Phys. Rev. Lett. 95, 182302 (2005). arXiv:hep-ex/0507083

    Article  ADS  Google Scholar 

  32. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006)

    Article  ADS  Google Scholar 

  33. J. Adam et al. (MEG Collaboration), Phys. Rev. Lett. 107, 171801 (2011). arXiv:1107.5547

    Article  ADS  Google Scholar 

  34. LEP2 SUSY Working Group: http://lepsusy.web.cern.ch/lepsusy/www/sleptons_summer04/slep_final.html

  35. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 104, 021802 (2010). arXiv:0908.2381

    Article  ADS  Google Scholar 

  36. V. Cirigliano, B. Grinstein, G. Isidori, M.B. Wise, Nucl. Phys. B 728, 121 (2005). arXiv:hep-ph/0507001

    Article  ADS  Google Scholar 

  37. S. Davidson, F. Palorini, Phys. Lett. B 642, 72 (2006). arXiv:hep-ph/0607329

    Article  ADS  Google Scholar 

  38. M.B. Gavela, T. Hambye, D. Hernandez, P. Hernandez, J. High Energy Phys. 0909, 038 (2009). arXiv:0906.1461

    Article  ADS  Google Scholar 

  39. R. Alonso, G. Isidori, L. Merlo, L.A. Munoz, E. Nardi, J. High Energy Phys. 1106, 037 (2011). arXiv:1103.5461

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU ERC Advanced Grant FLAVOUR (267104), and by MIUR under contract 2008XM9HLM. G.I. acknowledges the support of the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Isidori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blankenburg, G., Isidori, G. & Jones-Pérez, J. Neutrino masses and LFV from minimal breaking of U(3)5 and U(2)5 flavor symmetries. Eur. Phys. J. C 72, 2126 (2012). https://doi.org/10.1140/epjc/s10052-012-2126-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2126-7

Keywords

Navigation