Skip to main content
Log in

Rare top decay \(t \to c \bar{l}l\) as a probe of new physics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The rare top decay \(t \to c \bar{l}l\), which involves flavor violation, is studied as a possible probe of new physics. This decay is analyzed with one of the simplest Standard Model extensions with additional gauge symmetry formalism. The considered extension is the Left–Right Symmetric Model, including a new neutral gauge boson Z′ that allows one to obtain the decay at tree level through Flavor-Changing Neutral Currents (FCNC) couplings. The neutral gauge boson couplings are considered diagonal but family non-universal in order to induce these FCNC. We find \(\mathit{BR}(t \to c\bar{l}l)\sim10^{-13}\) for the range 1 TeV≤M Z≤3 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Ferro-Luzzi, in 35th International Conference on High Energy Physics: ICHEP 2010, París (2010), p. 010

    Google Scholar 

  2. A. Ratti, H. Matis, W. Turner, E. Bravin, S. White, R. Miyamoto, in Proceedings of the 1st International Particle Accelerator Conference: IPAC’10, Kyoto (2010), p. 501

    Google Scholar 

  3. G. Aad et al., Eur. Phys. J. C 71, 1630 (2011)

    Article  ADS  Google Scholar 

  4. ATLAS Collaboration, ATLAS-CONF-2011-163, CERN, Geneva, Switzerland (2011)

  5. CMS Collaboration, PAS-HIG-11-032, CERN, Geneva, Switzerland (2011)

  6. B. Grzadkzowski, J.F. Gunion, P. Krawczyk, Phys. Lett. B 268, 106 (1991)

    Article  ADS  Google Scholar 

  7. B. Mele, arXiv:hep-ph/0003064

  8. J.A. Aguilar-Saavedra, B.M. Nobre, Phys. Lett. B 553, 251 (2003)

    Article  ADS  Google Scholar 

  9. G. Eilam, J.L. Hewett, A. Soni, Phys. Rev. D 44, 1473 (1991)

    Article  ADS  Google Scholar 

  10. G. Eilam, J.L. Hewett, A. Soni, Phys. Rev. D 59, 039901(E) (1998)

    Article  ADS  Google Scholar 

  11. F. Larios, R. Martínez, M.A. Pérez, Int. J. Mod. Phys. A 21, 3473 (2006)

    Article  ADS  Google Scholar 

  12. J.L. Diaz-Cruz, M.A. Perez, G. Tavares-Velasco, J.J. Toscano, Phys. Rev. D 60, 115014 (1999). hep-ph/9903299

    Article  ADS  Google Scholar 

  13. J.L. Diaz-Cruz, R. Martinez, M.A. Perez, A. Rosado, Phys. Rev. D 41, 891–894 (1990)

    Article  ADS  Google Scholar 

  14. D. Atwood, S. Bar-Shalom, A. Soni, Phys. Lett. B 635, 112–117 (2006). hep-ph/0502234

    Article  ADS  Google Scholar 

  15. B. Mele, S. Petrarca, A. Soddu, Phys. Lett. B 435, 401 (1998)

    Article  ADS  Google Scholar 

  16. J.A. Aguilar-Saavedra, G.C. Branco, Phys. Lett. B 495, 347 (2000)

    Article  ADS  Google Scholar 

  17. D. Atwood, L. Reina, A. Soni, Phys. Rev. D 55, 3156 (1997)

    Article  ADS  Google Scholar 

  18. I. Baum, G. Eilam, S. Bar-Shalom, Phys. Rev. D 77, 113008 (2008). 0802.2622 [hep-ph]

    Article  ADS  Google Scholar 

  19. J.L. Díaz-Cruz, M.A. Pérez, G. Tavares-Velasco, J.J. Toscano, Phys. Rev. D 60, 115014 (1999)

    Article  ADS  Google Scholar 

  20. J.L. Diaz Cruz, D.A. Lopez Falcon, Phys. Rev. D 61, 051701 (2000). hep-ph/9911407

    Article  ADS  Google Scholar 

  21. J.L. Diaz-Cruz, R. Gaitan-Lozano, G. Lopez-Castro, C.E. Pagliarone, Phys. Rev. D 77, 094010 (2008)

    Article  ADS  Google Scholar 

  22. J.L. Díaz-Cruz, R. Noriega-Papaqui, A. Rosado, Phys. Rev. D 69, 095002 (2004)

    Article  ADS  Google Scholar 

  23. J.L. Díaz-Cruz, A. Rosado, Rev. Mex. Fis. 53, 396 (2007)

    Google Scholar 

  24. R. Martínez, J.A. Rodriguez, M. Rozo, Phys. Rev. D 68, 035001 (2003)

    Article  ADS  Google Scholar 

  25. R. Díaz, R. Martínez, J.A. Rodriguez, Phys. Rev. D 63, 095007 (2001)

    Article  ADS  Google Scholar 

  26. A.E. Cárcamo, R. Martínez, J.A. Rodriguez, Eur. Phys. J. C 50, 935 (2007)

    Article  ADS  Google Scholar 

  27. J.L. Díaz-Cruz, in Proceedings of the 5th Mexican Workshop of Particles and Fields. AIP Conference Proceedings, vol. 359, Puebla, México (AIP, New York, 1995), pp. 178–201

    Google Scholar 

  28. R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 566 (1975)

    Article  ADS  Google Scholar 

  29. R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 2558 (1975)

    Article  ADS  Google Scholar 

  30. G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975)

    Article  ADS  Google Scholar 

  31. G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 23, 165 (1981)

    Article  ADS  Google Scholar 

  32. R.N. Mohapatra, in CP Violation, ed. by C. Jarlskog (World Scientific, Singapore, 1989) (for a review)

    Google Scholar 

  33. P. Langacker, Rev. Mod. Phys. 81, 1199 (2009)

    Article  ADS  Google Scholar 

  34. P. Langacker, M. Plumacher, Phys. Rev. D 62, 013006 (2000)

    Article  ADS  Google Scholar 

  35. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983)

    Article  ADS  Google Scholar 

  36. Y. Zhang, H. An, X. Ji, R.N. Mohapatra, Nucl. Phys. B 802, 247 (2008)

    Article  ADS  MATH  Google Scholar 

  37. A. Arhrib, K. Cheung, C.W. Chiang, T.C. Yuan, Phys. Rev. D 73, 075015 (2006)

    Article  ADS  Google Scholar 

  38. J. Drobnak, S. Fajfer, J.F. Kamenik, J. High Energy Phys. 0903, 077 (2009). 0812.0294 [hep-ph]

    Article  ADS  Google Scholar 

  39. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010), and 2011 partial update for the 2012 edition

    Article  ADS  Google Scholar 

  40. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 701, 313 (2011). arXiv:1103.4574 [hep-ex]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by PAPIIT project IN117611-3 and Sistema Nacional de Investigadores (SNI) in México. J.H. Montes de Oca Y. is thankful for support from the postdoctoral DGAPA-UNAM grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gaitán-Lozano.

Appendix A: Analytical expressions and numerical values

Appendix A: Analytical expressions and numerical values

Below we give the complete analytic formulas for the family non-universal parameters in three considered scenarios. We also present the analytic expression of the integrals I 1,…,5.

1.1 A.1 Family non-universal couplings

The general expressions for the B i coefficients are given by

$$ B_{1}=2 \bigl( \bigl \vert B_{L}^u\bigr \vert ^{2}\bigl \vert B_{L}^l\bigr \vert ^{2}+\bigl \vert B_{R}^u\bigr \vert ^{2}\bigl \vert B_{R}^l\bigr \vert ^{2} \bigr), $$
(A.1)
$$ B_{2}=2 \bigl( \bigl \vert B_{L}^u\bigr \vert ^{2}\bigl \vert B_{R}^l\bigr \vert ^{2}+\bigl \vert B_{L}^l\bigr \vert ^{2}\bigl \vert B_{R}^u\bigr \vert ^{2} \bigr), $$
(A.2)
$$ B_{3}=\operatorname{Re} \bigl( B_{L}^l B_{R}^{u\ast } \bigr) \bigl( \bigl \vert B_{L}^u \bigr \vert ^{2}+\bigl \vert B_{R}^u\bigr \vert ^{2} \bigr), $$
(A.3)
$$ B_{4}=\operatorname{Re} \bigl( B_{L}^u B_{R}^{l\ast } \bigr) \bigl( \bigl \vert B_{L}^l \bigr \vert ^{2}+\bigl \vert B_{R}^l\bigr \vert ^{2} \bigr), $$
(A.4)

and

$$ B_{5}=2 \bigl[ \operatorname{Re} \bigl( B_{L}^u B_{L}^l B_{R}^{u\ast} B_{R}^{l\ast } \bigr) + \operatorname{Re} \bigl( B_{L}^u B_{L}^{l\ast }B_{R}^u B_{R}^{l\ast } \bigr) \bigr] . $$
(A.5)

The matrix elements for the scenario 1 are

$$ \bigl[ B_{L}^{u} \bigr]_{32}=Q_{L}^{u} ( x-1 ) V_{tb}V_{cb}^{\ast }, $$
(A.6)
$$ \bigl[ B_{R}^{u} \bigr]_{32}=0, $$
(A.7)
$$ \bigl[ B_{L,R}^{l} \bigr]_{33}=Q_{L,R}^{l}. $$
(A.8)

Then, we write the expressions of the B 1,…,5 in terms of the Wolfenstein parameter, taking V tb =1 and V cb = 2,

$$ B_{1}=2 \bigl( Q_{L}^{u}Q_{L}^{l} \bigr)^{2} ( x-1 )^{2}A^{2}\lambda^{4}, $$
(A.9)
$$ B_{2}=2 \bigl( Q_{L}^{u}Q_{R}^{l} \bigr)^{2} ( x-1 )^{2}A^{2}\lambda^{4}, $$
(A.10)
$$ B_{3}=0, $$
(A.11)
$$ B_{4}=Q_{R}^{l}Q_{L}^{u} ( x-1 ) A\lambda^{2} \bigl( \bigl \vert Q_{L}^{l} \bigr \vert ^{2}+\bigl \vert Q_{R}^{l}\bigr \vert ^{2} \bigr), $$
(A.12)

and

$$ B_{5}=0. $$
(A.13)

For the scenario 2

$$ \bigl[ B_{L}^{u} \bigr]_{32}=Q_{L}^{u} ( x-1 ) A\lambda^{2}, $$
(A.14)
$$ \bigl[ B_{R}^{u} \bigr]_{32}=Q_{R}^{u} ( x-1 ) s_{t}s_{c}A\lambda^{2}, $$
(A.15)
$$ \bigl[ B_{L,R}^{l} \bigr]_{33}=Q_{L,R}^{l}. $$
(A.16)

Then

$$ B_{1}=2 ( x-1 )^{2}A^{2}\lambda^{4} \bigl[ \bigl( Q_{L}^{u}Q_{L}^{l} \bigr)^{2}+ \bigl( Q_{R}^{u}Q_{R}^{l} \bigr)^{2} \bigr] , $$
(A.17)
$$ B_{2}=2 ( x-1 )^{2}A^{2}\lambda^{4} \bigl[ \bigl( Q_{L}^{u}Q_{R}^{l} \bigr)^{2}+ \bigl( Q_{R}^{u}Q_{L}^{l} \bigr)^{2} \bigr], $$
(A.18)
$$ B_{3}=Q_{R}^{u}Q_{L}^{l} ( x-1 )^{3}s_{t}s_{c}A^{3} \lambda^{6} \bigl[ \bigl( Q_{L}^{u} \bigr)^{2}+ \bigl( Q_{R}^{u} \bigr)^{2} \bigr], $$
(A.19)
$$ B_{4}=Q_{R}^{l}Q_{L}^{u} ( x-1 ) A\lambda^{2} \bigl( \bigl \vert Q_{L}^{l} \bigr \vert ^{2}+\bigl \vert Q_{R}^{l}\bigr \vert ^{2} \bigr), $$
(A.20)

and

$$ B_{5}=4s_{t}s_{c}Q_{L}^{u}Q_{R}^{u}Q_{L}^{l}Q_{R}^{l} ( x-1 )^{2}A^{2}\lambda^{4}. $$
(A.21)

Finally, for scenario 3

$$ \bigl[ B_{L}^{u} \bigr]_{32}=Q_{L}^{u} \bigl( x_{1}V_{td}V_{cd}^{\ast }+x_{2}V_{ts}V_{cs}^{\ast }+x_{3}V_{tb}V_{cb}^{\ast } \bigr) , $$
(A.22)
$$ \bigl[ B_{R}^{u} \bigr]_{32}=0, $$
(A.23)
$$ \bigl[ B_{L,R}^{l} \bigr]_{33}=Q_{L,R}^{l}. $$
(A.24)

Then

(A.25)
(A.26)
$$ B_{3}=0, $$
(A.27)
(A.28)

and

$$ B_{5}=0. $$
(A.29)

1.2 A.2 Lepton and charm quark contribution

The a i coefficients in (12) contain the charged lepton and charm quark contribution. They are given by

(A.30)
(A.31)
(A.32)
(A.33)
(A.34)

where \(\mu_{1}=\frac{m_{\mathrm{lepton}}}{m_{\mathrm{top}}}\) and \(\mu_{2}=\frac{m_{\mathrm{charm}}}{m_{\mathrm{top}}}\), see Table 4. The I i are integrals in the three phase space with analytical solution

(A.35)
(A.36)
(A.37)
(A.38)
(A.39)

The numerical values are shown in Table 3.

Table 3 Numerical values of the integrals for each charged lepton
Table 4 Numerical values of the B i , i=1,…,5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Cruz, J.L., Diaz-Furlong, A., Gaitán-Lozano, R. et al. Rare top decay \(t \to c \bar{l}l\) as a probe of new physics. Eur. Phys. J. C 72, 2119 (2012). https://doi.org/10.1140/epjc/s10052-012-2119-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2119-6

Keywords

Navigation