Skip to main content
Log in

Cosmological evolution of interacting new holographic dark energy in non-flat universe

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the interacting holographic dark energy with new infrared cutoff (involving Hubble parameter and its derivative) in a non-flat universe. In this context, we obtain the equation of state parameter which evolutes the universe from the vacuum dark energy region towards the quintessence region for particular values of constant parameters. It is found that this model always remains unstable against small perturbations. Further, we establish the correspondence of this model having quintessential behavior with quintessence, tachyon, K-essence and dilaton scalar-field models. The dynamics of scalar fields and potentials indicate accelerated expansion of the universe, which is consistent with the current observations. Finally, we discuss the validity of the generalized second law of thermodynamics in this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. R.R. Caldwell, M. Doran, Phys. Rev. D 69, 103517 (2004)

    ADS  Google Scholar 

  3. T. Koivisto, D.F. Mota, Phys. Rev. D 73, 083502 (2006)

    MathSciNet  ADS  Google Scholar 

  4. S.F. Daniel, Phys. Rev. D 77, 103513 (2008)

    ADS  Google Scholar 

  5. H. Hoekstra, B. Jain, Annu. Rev. Nucl. Part. Sci. 58, 99 (2008)

    Article  ADS  Google Scholar 

  6. C. Fedeli, L. Moscardini, M. Bartelmann, Astron. Astrophys. 500, 667 (2009)

    Article  ADS  Google Scholar 

  7. P.J.E. Peebles, Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S.D.H. Hsu, Phys. Lett. B 594, 13 (2004)

    ADS  Google Scholar 

  11. M. Li, Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  12. C. Gao, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  13. L. Granda, A. Oliveros, Phys. Lett. B 669, 275 (2008)

    ADS  Google Scholar 

  14. S. Chen, J. Jing, Phys. Lett. B 679, 144 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. X. Zhang, Phys. Rev. D 79, 103509 (2009)

    Article  ADS  Google Scholar 

  16. Y. Wang, L. Xu, Phys. Rev. D 81, 083523 (2010)

    ADS  Google Scholar 

  17. V. Gorini et al., Phys. Rev. D 72, 103518 (2005)

    ADS  Google Scholar 

  18. H. Sandvik et al., Phys. Rev. D 69, 123524 (2004)

    ADS  Google Scholar 

  19. Y.S. Myung, Phys. Lett. B 652, 223 (2007)

    MathSciNet  ADS  Google Scholar 

  20. K.Y. Kim, H.W. Lee, Y.S. Myung, Phys. Lett. B 660, 118 (2008)

    ADS  Google Scholar 

  21. E. Ebrahimi, A. Sheykhi, Int. J. Mod. Phys. D 20, 2369 (2011)

    ADS  Google Scholar 

  22. F. Piazza, S. Tsujikawa, J. Cosmol. Astropart. Phys. 07, 004 (2004)

    Article  ADS  Google Scholar 

  23. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  24. L. Granda, A. Oliveros, Phys. Lett. B 671, 199 (2009)

    ADS  Google Scholar 

  25. K. Karami, J. Fehri, Phys. Lett. B 684, 61 (2010)

    ADS  Google Scholar 

  26. A. Sheykhi, Phys. Rev. D 84, 107302 (2011)

    ADS  Google Scholar 

  27. M.R. Setare, J. Cosmol. Astropart. Phys. 01, 023 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Sheykhi, Class. Quantum Gravity 27, 025007 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Mazumder, S. Chakraborty, Gen. Relativ. Gravit. 42, 813 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 08, 013 (2004)

    Article  ADS  Google Scholar 

  31. C.L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1 (2003)

    Article  ADS  Google Scholar 

  32. J.L. Sievers et al., Astrophys. J. 591, 599 (2003)

    Article  ADS  Google Scholar 

  33. G. Efstathiou, Mon. Not. R. Astron. Soc. 343, L95 (2003)

    Article  ADS  Google Scholar 

  34. J.P. Luminet, Nature 425, 593 (2003)

    Article  ADS  Google Scholar 

  35. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  36. Y. Gong, B. Wang, Y.Z. Zhang, Phys. Rev. D 72, 043510 (2005)

    ADS  Google Scholar 

  37. U. Seljak, A. Slosar, P. McDonald, J. Cosmol. Astropart. Phys. 10, 014 (2006)

    Article  ADS  Google Scholar 

  38. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  39. K. Ichikawa et al., J. Cosmol. Astropart. Phys. 06, 005 (2006)

    Article  ADS  Google Scholar 

  40. J. Lu et al., J. Cosmol. Astropart. Phys. 03, 031 (2010)

    Article  ADS  Google Scholar 

  41. A. Mazumdar, S. Panda, A. Perez-Lorenzana, Nucl. Phys. B 614, 101 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. G.W. Gibbons, Phys. Lett. B 537, 1 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  43. A. Feinstein, Phys. Rev. D 66, 063511 (2002)

    ADS  Google Scholar 

  44. Y.S. Piao et al., Phys. Rev. D 66, 121301 (2002)

    ADS  Google Scholar 

  45. S. Tsujikawa, M. Sami, Phys. Lett. B 603, 113 (2004)

    ADS  Google Scholar 

  46. S. Mizuno, S.J. Lee, E.J. Copeland, Phys. Rev. D 70, 043525 (2004)

    MathSciNet  ADS  Google Scholar 

  47. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)

    ADS  Google Scholar 

  48. C. Armendáriz-Picón, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  49. C. Armendáriz-Picón, V. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001)

    ADS  Google Scholar 

  50. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    MathSciNet  ADS  Google Scholar 

  51. R.G. Cai, S.P. Kim, J. High Energy Phys. 0502, 050 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  52. X. Zhang, Phys. Lett. B 648, 1 (2007)

    ADS  Google Scholar 

  53. X. Zhang, Phys. Rev. D 74, 103505 (2006)

    ADS  Google Scholar 

  54. A. Rozas-Fernández, Eur. Phys. J. C 71, 1536 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, M., Jawad, A. Cosmological evolution of interacting new holographic dark energy in non-flat universe. Eur. Phys. J. C 72, 2097 (2012). https://doi.org/10.1140/epjc/s10052-012-2097-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2097-8

Keywords

Navigation