Skip to main content
Log in

The holographic superconductors in higher-dimensional AdS soliton

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We explore the behavior of the holographic superconductors at zero temperature for a charged scalar field coupled to a Maxwell field in higher-dimensional AdS soliton spacetime via analytical way. In the probe limit, we obtain the critical chemical potentials increase linearly as a total dimension d grows up. We find that the critical exponent for condensation operator is obtained as 1/2 independently of d, and the charge density is linearly related to the chemical potential near the critical point. Furthermore, we consider a slightly generalized setup the Einstein–Power–Maxwell field theory, and find that the critical exponent for condensation operator is given as 1/(4−2n) in terms of a power parameter n of the Power–Maxwell field, and the charge density is proportional to the chemical potential to the power of 1/(2−n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Born, L. Infeld, Proc. R. Soc. A 144, 425 (1934)

    Article  ADS  Google Scholar 

  2. B. Hoffmann, Phys. Rev. 47, 877 (1935)

    Article  ADS  Google Scholar 

  3. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936). physics/0605038

    ADS  Google Scholar 

  4. H.P. de Oliveira, Class. Quantum Gravity 11, 1469 (1994)

    Article  ADS  Google Scholar 

  5. M. Hassaine, C. Martinez, Phys. Rev. D 75, 027502 (2007). hep-th/0701058

    Article  MathSciNet  ADS  Google Scholar 

  6. S.S. Gubser, Phys. Rev. D 78, 065034 (2008). arXiv:0801.2977 [hep-th]

    Article  ADS  Google Scholar 

  7. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295 [hep-th]

    Article  ADS  Google Scholar 

  8. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). (Int. J. Theor. Phys., 38, 1113 (1999).) hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  9. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998). hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). hep-th/9802150

    MathSciNet  ADS  MATH  Google Scholar 

  11. S.A. Hartnoll, Class. Quantum Gravity 26, 224002 (2009). arXiv:0903.3246 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  12. C.P. Herzog, J. Phys. A 42, 343001 (2009). arXiv:0904.1975 [hep-th]

    Article  MathSciNet  Google Scholar 

  13. G.T. Horowitz. arXiv:1002.1722 [hep-th]

  14. E. Nakano, W.-Y. Wen, Phys. Rev. D 78, 046004 (2008). arXiv:0804.3180 [hep-th]

    Article  ADS  Google Scholar 

  15. G.T. Horowitz, M.M. Roberts, Phys. Rev. D 78, 126008 (2008). arXiv:0810.1077 [hep-th]

    Article  ADS  Google Scholar 

  16. G. Koutsoumbas, E. Papantonopoulos, G. Siopsis, J. High Energy Phys. 0907, 026 (2009). arXiv:0902.0733 [hep-th]

    Article  ADS  Google Scholar 

  17. J. Sonner, Phys. Rev. D 80, 084031 (2009). arXiv:0903.0627 [hep-th]

    Article  ADS  Google Scholar 

  18. I. Amado, M. Kaminski, K. Landsteiner, J. High Energy Phys. 0905, 021 (2009). arXiv:0903.2209 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Maeda, M. Natsuume, T. Okamura, Phys. Rev. D 79, 126004 (2009). arXiv:0904.1914 [hep-th]

    Article  ADS  Google Scholar 

  20. H.-b. Zeng, Z.-y. Fan, Z.-z. Ren, Phys. Rev. D 80, 066001 (2009). arXiv:0906.2323 [hep-th]

    Article  ADS  Google Scholar 

  21. O.C. Umeh, J. High Energy Phys. 0908, 062 (2009). arXiv:0907.3136 [hep-th]

    Article  ADS  Google Scholar 

  22. R. Gregory, S. Kanno, J. Soda, J. High Energy Phys. 0910, 010 (2009). arXiv:0907.3203 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  23. S.S. Gubser, C.P. Herzog, S.S. Pufu, T. Tesileanu, Phys. Rev. Lett. 103, 141601 (2009). arXiv:0907.3510 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  24. J.P. Gauntlett, J. Sonner, T. Wiseman, Phys. Rev. Lett. 103, 151601 (2009). arXiv:0907.3796 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  25. R.A. Konoplya, A. Zhidenko, Phys. Lett. B 686, 199 (2010). arXiv:0909.2138 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  26. X.-H. Ge, B. Wang, S.-F. Wu, G.-H. Yang, J. High Energy Phys. 1008, 108 (2010). arXiv:1002.4901 [hep-th]

    Article  ADS  Google Scholar 

  27. C.P. Herzog, Phys. Rev. D 81, 126009 (2010). arXiv:1003.3278 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Siopsis, J. Therrien, J. High Energy Phys. 1005, 013 (2010). arXiv:1003.4275 [hep-th]

    Article  ADS  Google Scholar 

  29. Y. Brihaye, B. Hartmann, Phys. Rev. D 81, 126008 (2010). arXiv:1003.5130 [hep-th]

    Article  ADS  Google Scholar 

  30. S. Franco, A. Garcia-Garcia, D. Rodriguez-Gomez, J. High Energy Phys. 1004, 092 (2010). arXiv:0906.1214 [hep-th]

    Article  ADS  Google Scholar 

  31. S. Franco, A.M. Garcia-Garcia, D. Rodriguez-Gomez, Phys. Rev. D 81, 041901 (2010). arXiv:0911.1354 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  32. F. Aprile, J.G. Russo, Phys. Rev. D 81, 026009 (2010). arXiv:0912.0480 [hep-th]

    Article  ADS  Google Scholar 

  33. T. Nishioka, S. Ryu, T. Takayanagi, J. High Energy Phys. 1003, 131 (2010). arXiv:0911.0962 [hep-th]

    Article  ADS  Google Scholar 

  34. R.-G. Cai, H.-F. Li, H.-Q. Zhang, Phys. Rev. D 83, 126007 (2011). arXiv:1103.5568 [hep-th]

    Article  ADS  Google Scholar 

  35. Y. Peng, Q. Pan, B. Wang, Phys. Lett. B 699, 383 (2011). arXiv:1104.2478 [hep-th]

    Article  ADS  Google Scholar 

  36. J. Jing, Q. Pan, S. Chen, J. High Energy Phys. 1111, 045 (2011). arXiv:1106.5181 [hep-th]

    Article  ADS  Google Scholar 

  37. R.-G. Cai, L. Li, H.-Q. Zhang, Y.-L. Zhang, Phys. Rev. D 84, 126008 (2011). arXiv:1109.5885 [hep-th]

    Article  ADS  Google Scholar 

  38. S. Gangopadhyay, D. Roychowdhury, J. High Energy Phys. 1205, 002 (2012). arXiv:1201.6520 [hep-th]

    Article  ADS  Google Scholar 

  39. S. Surya, K. Schleich, D.M. Witt, Phys. Rev. Lett. 86, 5231 (2001). hep-th/0101134

    Article  MathSciNet  ADS  Google Scholar 

  40. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998). hep-th/9803131

    MathSciNet  MATH  Google Scholar 

  41. G.T. Horowitz, R.C. Myers, Phys. Rev. D 59, 026005 (1998). hep-th/9808079

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Clarkson, R.B. Mann, Class. Quantum Gravity 23, 1507 (2006). arXiv:hep-th/0508200

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Oh Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.O. The holographic superconductors in higher-dimensional AdS soliton. Eur. Phys. J. C 72, 2092 (2012). https://doi.org/10.1140/epjc/s10052-012-2092-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2092-0

Keywords

Navigation