Skip to main content
Log in

Higgs boson production at hadron colliders: hard-collinear coefficients at the NNLO

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

An Erratum to this article was published on 31 August 2012

Abstract

We consider the production of the Standard Model Higgs boson through the gluon fusion mechanism in hadron collisions. We present the next-to-next-to-leading order (NNLO) QCD result of the hard-collinear coefficient function for the all-order resummation of logarithmically enhanced contributions at small transverse momentum. The coefficient function controls NNLO contributions in resummed calculations at full next-to-next-to-leading logarithmic accuracy. The same coefficient function is used in applications of the subtraction method to perform fully exclusive perturbative calculations up to NNLO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. These analogies may hide important physical, conceptual and technical differences, which are discussed in the literature on transverse-momentum resummation.

  2. In this introductory part we are using a shorthand notation, since the symbol \({\mathcal{H}}^{(2)}\) actually refers to a set of several coefficient functions.

  3. To be precise, the logarithms are combined with corresponding ‘contact’ terms, which are proportional to \(\delta(q_{T}^{2})\). These combinations define regularized (integrable) ‘plus distributions’ \([\frac{1}{q_{T}^{2}}\ln^{m} (M^{2}/q_{T}^{2}) ]_{+}\) with respect to \(q_{T}^{2}\). The cumulative cross section in Eq. (2) is insensitive to the precise mathematical definition of these ‘plus distributions’.

  4. This is the region where the size of the momenta of the virtual loops is of the order of M.

  5. The reader who is not interested in issues related to the specification of a resummation scheme can simply assume that \(H_{g}^{H}(\alpha _{\mathrm {S}}) \equiv1\) throughout this paper.

  6. The resummation-scheme dependence also cancels by consistently expanding Eq. (7) in terms of classes of resummed (leading, next-to-leading and so forth) logarithmic contributions [29].

  7. The coupling \(\alpha _{\mathrm {S}}(b_{0}^{2}/b^{2})\) can be expressed in terms of α S(M 2) and \(\ln(b^{2}M^{2}/b_{0}^{2})\) by using the renormalization-group equation for the perturbative μ 2-evolution of the running coupling α S(μ 2).

  8. We actually use the expressions of Refs. [43, 44], which are given for general colour factors, \(C_{F}=(N_{c}^{2}-1)/(2N_{c})\) and C A =N c , of SU(N c ).

References

  1. Y.L. Dokshitzer, D. Diakonov, S.I. Troian, Phys. Lett. B 79, 269 (1978)

    Article  ADS  Google Scholar 

  2. Y.L. Dokshitzer, D. Diakonov, S.I. Troian, Phys. Rep. 58, 269 (1980)

    Article  ADS  Google Scholar 

  3. G. Parisi, R. Petronzio, Nucl. Phys. B 154, 427 (1979)

    Article  ADS  Google Scholar 

  4. G. Curci, M. Greco, Y. Srivastava, Nucl. Phys. B 159, 451 (1979)

    Article  ADS  Google Scholar 

  5. J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981) [Erratum-ibid. B 213 (1983) 545]

    Article  ADS  Google Scholar 

  6. J.C. Collins, D.E. Soper, Nucl. Phys. B 197, 446 (1982)

    Article  ADS  Google Scholar 

  7. J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 250, 199 (1985)

    Article  ADS  Google Scholar 

  8. S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 596, 299 (2001)

    Article  ADS  MATH  Google Scholar 

  9. S. Catani, M. Grazzini, Nucl. Phys. B 845, 297 (2011)

    Article  ADS  MATH  Google Scholar 

  10. J. Kodaira, L. Trentadue, Phys. Lett. B 112, 66 (1982)

    Article  ADS  Google Scholar 

  11. J. Kodaira, L. Trentadue, Report SLAC-PUB-2934 (1982)

  12. J. Kodaira, L. Trentadue, Phys. Lett. B 123, 335 (1983)

    Article  ADS  Google Scholar 

  13. C.T.H. Davies, W.J. Stirling, Nucl. Phys. B 244, 337 (1984)

    Article  ADS  Google Scholar 

  14. C.T.H. Davies, B.R. Webber, W.J. Stirling, Nucl. Phys. B 256, 413 (1985)

    Article  ADS  Google Scholar 

  15. S. Catani, E. D’Emilio, L. Trentadue, Phys. Lett. B 211, 335 (1988)

    Article  ADS  Google Scholar 

  16. D. de Florian, M. Grazzini, Phys. Rev. Lett. 85, 4678 (2000)

    Article  ADS  Google Scholar 

  17. D. de Florian, M. Grazzini, Nucl. Phys. B 616, 247 (2001)

    Article  ADS  Google Scholar 

  18. T. Becher, M. Neubert, Eur. Phys. J. C 71, 1665 (2011)

    Article  ADS  Google Scholar 

  19. S. Catani, M. Grazzini, Phys. Rev. Lett. 98, 222002 (2007)

    Article  ADS  Google Scholar 

  20. S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Phys. Rev. Lett. 103, 082001 (2009)

    Article  ADS  Google Scholar 

  21. G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini, Phys. Lett. B 696, 207 (2011)

    Article  ADS  Google Scholar 

  22. C. Balazs, C.P. Yuan, Phys. Lett. B 478, 192 (2000)

    Article  ADS  Google Scholar 

  23. Q.H. Cao, C.R. Chen, C. Schmidt, C.P. Yuan, Report ANL-HEP-PR-09-20. arXiv:0909.2305 [hep-ph]

  24. E.L. Berger, J.w. Qiu, Phys. Rev. D 67, 034026 (2003)

    Article  ADS  Google Scholar 

  25. E.L. Berger, J.w. Qiu, Phys. Rev. Lett. 91, 222003 (2003)

    Article  ADS  Google Scholar 

  26. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Phys. Lett. B 564, 65 (2003)

    Article  ADS  Google Scholar 

  27. A. Kulesza, W.J. Stirling, J. High Energy Phys. 0312, 056 (2003)

    Article  ADS  Google Scholar 

  28. A. Kulesza, G.F. Sterman, W. Vogelsang, Phys. Rev. D 69, 014012 (2004)

    Article  ADS  Google Scholar 

  29. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 737, 73 (2006)

    Article  ADS  MATH  Google Scholar 

  30. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Nucl. Phys. B 791, 1 (2008)

    Article  ADS  Google Scholar 

  31. S. Mantry, F. Petriello, Phys. Rev. D 83, 053007 (2011)

    Article  ADS  Google Scholar 

  32. D. de Florian, G. Ferrera, M. Grazzini, D. Tommasini, J. High Energy Phys. 1111, 064 (2011)

    Article  Google Scholar 

  33. M. Grazzini, J. High Energy Phys. 0802, 043 (2008)

    Article  ADS  Google Scholar 

  34. J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976)

    ADS  Google Scholar 

  35. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979)

    Google Scholar 

  36. M. Kramer, E. Laenen, M. Spira, Nucl. Phys. B 511, 523 (1998)

    Article  ADS  Google Scholar 

  37. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 353 (1997)

    Article  ADS  Google Scholar 

  38. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Nucl. Phys. B 510, 61 (1998)

    ADS  Google Scholar 

  39. R.P. Kauffman, Phys. Rev. D 45, 1512 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  40. C.P. Yuan, Phys. Lett. B 283, 395 (1992)

    Article  ADS  Google Scholar 

  41. R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)

    Article  ADS  Google Scholar 

  42. C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220 (2002)

    Article  ADS  Google Scholar 

  43. V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 665, 325 (2003)

    Article  ADS  Google Scholar 

  44. V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 704, 332 (2005)

    Article  ADS  MATH  Google Scholar 

  45. C.J. Glosser, C.R. Schmidt, J. High Energy Phys. 0212, 016 (2002)

    Article  ADS  Google Scholar 

  46. V. Ravindran, J. Smith, W.L. Van Neerven, Nucl. Phys. B 634, 247 (2002)

    Article  ADS  Google Scholar 

  47. S. Catani, D. de Florian, M. Grazzini, J. High Energy Phys. 0201, 015 (2002)

    Article  ADS  Google Scholar 

  48. S. Dawson, Nucl. Phys. B 359, 283 (1991)

    Article  ADS  Google Scholar 

  49. A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B 264, 440 (1991)

    Article  ADS  Google Scholar 

  50. S. Catani, D. de Florian, M. Grazzini, J. High Energy Phys. 0105, 025 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet, Initial Training Network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Catani.

Additional information

M. Grazzini is on leave of absence from INFN, Sezione di Firenze, Sesto Fiorentino, Florence, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catani, S., Grazzini, M. Higgs boson production at hadron colliders: hard-collinear coefficients at the NNLO. Eur. Phys. J. C 72, 2013 (2012). https://doi.org/10.1140/epjc/s10052-012-2013-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2013-2

Keywords

Navigation