Skip to main content

Black hole spectroscopy via adiabatic invariant in a quantum corrected spacetime

Abstract

Using the modified Kunstatter method, which employs as proper frequency the imaginary part instead of the real part of the quasinormal modes, the entropy spectrum and area spectrum of the modified Schwarzschild black holes in gravity’s rainbow are investigated. In the current study, two cases of modified dispersion relations concerning energy dependent and energy independent speed of light are considered. The entropy spectra with equal spacing are derived in these two cases. Furthermore, the obtained entropy spectra are independent of the energy of a test particle and are the same as the one of the usual Schwarzschild black hole. Also, the same area spectrum formulas are obtained in these different dispersion relations. However, due to the quantum effect of spacetime, the obtained area spectra are not equally spaced and are different from the one of the usual Schwarzschild black hole. Besides, in these two cases, the same black hole entropy formulas with logarithmic correction to the standard Bekenstein–Hawking area formula are obtained by the adiabatic invariant. The form of area spacing formulas and entropy formulas are independent of the particle’s energy, but the area spacing and entropy can have energy dependence through the area.

This is a preview of subscription content, access via your institution.

References

  1. J.D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972)

    Article  ADS  Google Scholar 

  2. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  3. J.D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974)

    Article  ADS  Google Scholar 

  4. J.D. Bekenstein, arXiv:gr-qc/9710076

  5. J.D. Bekenstein, arXiv:gr-qc/9808028

  6. S. Hod, Phys. Rev. Lett. 81, 4239 (1998). arXiv:gr-qc/9812002

    MathSciNet  Google Scholar 

  7. S. Hod, Phys. Rev. D 59, 024014 (1998). arXiv:gr-qc/9906004

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003). arXiv:gr-qc/0212014

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008). arXiv:0711.3145

    Article  MathSciNet  ADS  Google Scholar 

  10. E.C. Vagenas, J. High Energy Phys. 0811, 073 (2008). arXiv:0804.3264

    Article  MathSciNet  ADS  Google Scholar 

  11. A.J.M. Medved, Class. Quantum Gravity 25, 205014 (2008). arXiv:0804.4346

    Article  MathSciNet  ADS  Google Scholar 

  12. K. Ropotenko, Phys. Rev. D 82, 044037 (2010). arXiv:0911.5635

    Article  ADS  Google Scholar 

  13. S. Wei, R. Li, Y. Liu, J. Ren, J. High Energy Phys. 03, 076 (2009). arXiv:0901.0587

    MathSciNet  Google Scholar 

  14. D. Kothawala, T. Padmanabhan, S. Sarkar, Phys. Rev. D 78, 104018 (2008). arXiv:0807.1481

    Article  MathSciNet  ADS  Google Scholar 

  15. W.B. Li, L.X. Xu, J.B. Lu, Phys. Lett. B 676, 177 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. B.R. Majhi, Phys. Lett. B 686, 49 (2010). arXiv:0911.3239

    Article  MathSciNet  ADS  Google Scholar 

  17. J.L. Jing, C.K. Ding, Chin. Phys. Lett. 25, 858 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Wang, C.Y. Lin, C. Molina, Phys. Rev. D 70, 064025 (2004). arXiv:hep-th/0407024

    Article  MathSciNet  ADS  Google Scholar 

  19. S.W. Wei, Y.X. Liu, arXiv:0906.0908

  20. S.W. Wei, Y.X. Liu, K. Yang, Y. Zhong, Phys. Rev. D 81, 104042 (2010). arXiv:1002.1553

    Article  ADS  Google Scholar 

  21. R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010). arXiv:0907.4271

    Article  ADS  Google Scholar 

  22. J. Louko, J. Makela, Phys. Rev. D 54, 4982 (1996). arXiv:gr-qc/9605058

    Article  MathSciNet  ADS  Google Scholar 

  23. V.F. Mukhanov, JETP Lett. 44, 63 (1986)

    MathSciNet  ADS  Google Scholar 

  24. A. Barvinsky, S. Das, G. Kunstatter, Class. Quantum Gravity 18, 4845 (2001). arXiv:gr-qc/0012066

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. A. Barvinsky, S. Das, G. Kunstatter, Phys. Lett. B 517, 415 (2001). arXiv:hep-th/0102061

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. A. Barvinsky, S. Das, G. Kunstatter, Found. Phys. 32, 1851 (2002). arXiv:hep-th/0209039

    Article  MathSciNet  Google Scholar 

  27. Y. Kwon, S. Nam, Class. Quantum Gravity 27, 125007 (2010). arXiv:1001.5106

    Article  MathSciNet  ADS  Google Scholar 

  28. B.R. Majhi, E.C. Vagenas, Phys. Lett. B 701, 623 (2011). arXiv:1106.2292

    Article  ADS  Google Scholar 

  29. H.P. Nollert, Class. Quantum Gravity 16, R159 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. D. Kimberly, J. Magueijo, J. Medeiros, Phys. Rev. D 70, 084007 (2004). arXiv:gr-qc/0303067

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Magueijo, L. Smolin, Class. Quantum Gravity 21, 1725 (2004). arXiv:gr-qc/0305055

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. J. Hackett, Class. Quantum Gravity 23, 3833 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007). arXiv:gr-qc/0611024

    Article  MathSciNet  ADS  Google Scholar 

  34. Y. Ling, X. Li, B. Hu, Mod. Phys. Lett. A 22, 2749 (2007). arXiv:gr-qc/0512084

    Article  MATH  ADS  Google Scholar 

  35. P. Galan, G.A. Mena Marugan, Phys. Rev. D 74, 044035 (2006). arXiv:gr-qc/0608061

    Article  MathSciNet  ADS  Google Scholar 

  36. G. Garattnti, Phys. Lett. B 685, 329 (2010). arXiv:0902.3927 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  37. C.Z. Liu, J.Y. Zhu, Chin. Phys. B 18, 416 (2009). arXiv:gr-qc/0703058

    MathSciNet  ADS  Google Scholar 

  38. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002). arXiv:gr-qc/0012051

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238

    Article  MATH  ADS  Google Scholar 

  40. J. Kowalski-Glikman, Phys. Lett. A 286, 391 (2001). arXiv:hep-th/0102098

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002). arXiv:hep-th/0112090

    Article  ADS  Google Scholar 

  42. J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003). arXiv:gr-qc/0207085

    Article  MathSciNet  ADS  Google Scholar 

  43. C. Heuson, arXiv:gr-qc/0606124

  44. P. Galan, G.A. Mena Marugan, Phys. Rev. D 70, 124003 (2004). arXiv:gr-qc/0411089

    Article  MathSciNet  ADS  Google Scholar 

  45. P. Galan, G.A. Mena Marugan, Phys. Rev. D 72, 044019 (2005). arXiv:gr-qc/0507098

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Mignemi, Phys. Rev. D 68, 065029 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  47. F. Hinterleitner, Phys. Rev. D 71, 025016 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  48. R.J. Adler, P. Chen, D.I. Santiago, Gen. Relativ. Gravit. 33, 2101 (2001). arXiv:gr-qc/0106080

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. P. Chen, R.J. Adler, Nucl. Phys. Proc. Suppl. 124, 103 (2003). arXiv:gr-qc/0205106

    Article  MATH  ADS  Google Scholar 

  50. Y. Ling, B. Hu, X. Li, Phys. Rev. D 73, 087702 (2006). arXiv:gr-qc/0512083

    Article  ADS  Google Scholar 

  51. D.N. Page, New J. Phys. 7, 203 (2005). arXiv:hep-th/0409024

    Article  MathSciNet  ADS  Google Scholar 

  52. A.J.M. Medved, E.C. Vagenas, Phys. Rev. D 70, 124021 (2004). arXiv:hep-th/0411022

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Y. Lin for helpful discussions. Also, I would like to thank the referees for helpful comments and advices. The work was supported by the National Natural Science Foundation of China (No. 11045005) and the Natural Science Foundation of Zhejiang Province of China (No. Y6090739).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Zhou Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, CZ. Black hole spectroscopy via adiabatic invariant in a quantum corrected spacetime. Eur. Phys. J. C 72, 2009 (2012). https://doi.org/10.1140/epjc/s10052-012-2009-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2009-y

Keywords

  • Black Hole
  • Black Hole Entropy
  • Area Spectrum
  • Area Spacing
  • Entropy Spectrum