Abstract
Using the modified Kunstatter method, which employs as proper frequency the imaginary part instead of the real part of the quasinormal modes, the entropy spectrum and area spectrum of the modified Schwarzschild black holes in gravity’s rainbow are investigated. In the current study, two cases of modified dispersion relations concerning energy dependent and energy independent speed of light are considered. The entropy spectra with equal spacing are derived in these two cases. Furthermore, the obtained entropy spectra are independent of the energy of a test particle and are the same as the one of the usual Schwarzschild black hole. Also, the same area spectrum formulas are obtained in these different dispersion relations. However, due to the quantum effect of spacetime, the obtained area spectra are not equally spaced and are different from the one of the usual Schwarzschild black hole. Besides, in these two cases, the same black hole entropy formulas with logarithmic correction to the standard Bekenstein–Hawking area formula are obtained by the adiabatic invariant. The form of area spacing formulas and entropy formulas are independent of the particle’s energy, but the area spacing and entropy can have energy dependence through the area.
This is a preview of subscription content, access via your institution.
References
J.D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972)
J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)
J.D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974)
J.D. Bekenstein, arXiv:gr-qc/9710076
J.D. Bekenstein, arXiv:gr-qc/9808028
S. Hod, Phys. Rev. Lett. 81, 4239 (1998). arXiv:gr-qc/9812002
S. Hod, Phys. Rev. D 59, 024014 (1998). arXiv:gr-qc/9906004
G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003). arXiv:gr-qc/0212014
M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008). arXiv:0711.3145
E.C. Vagenas, J. High Energy Phys. 0811, 073 (2008). arXiv:0804.3264
A.J.M. Medved, Class. Quantum Gravity 25, 205014 (2008). arXiv:0804.4346
K. Ropotenko, Phys. Rev. D 82, 044037 (2010). arXiv:0911.5635
S. Wei, R. Li, Y. Liu, J. Ren, J. High Energy Phys. 03, 076 (2009). arXiv:0901.0587
D. Kothawala, T. Padmanabhan, S. Sarkar, Phys. Rev. D 78, 104018 (2008). arXiv:0807.1481
W.B. Li, L.X. Xu, J.B. Lu, Phys. Lett. B 676, 177 (2009)
B.R. Majhi, Phys. Lett. B 686, 49 (2010). arXiv:0911.3239
J.L. Jing, C.K. Ding, Chin. Phys. Lett. 25, 858 (2008)
B. Wang, C.Y. Lin, C. Molina, Phys. Rev. D 70, 064025 (2004). arXiv:hep-th/0407024
S.W. Wei, Y.X. Liu, arXiv:0906.0908
S.W. Wei, Y.X. Liu, K. Yang, Y. Zhong, Phys. Rev. D 81, 104042 (2010). arXiv:1002.1553
R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010). arXiv:0907.4271
J. Louko, J. Makela, Phys. Rev. D 54, 4982 (1996). arXiv:gr-qc/9605058
V.F. Mukhanov, JETP Lett. 44, 63 (1986)
A. Barvinsky, S. Das, G. Kunstatter, Class. Quantum Gravity 18, 4845 (2001). arXiv:gr-qc/0012066
A. Barvinsky, S. Das, G. Kunstatter, Phys. Lett. B 517, 415 (2001). arXiv:hep-th/0102061
A. Barvinsky, S. Das, G. Kunstatter, Found. Phys. 32, 1851 (2002). arXiv:hep-th/0209039
Y. Kwon, S. Nam, Class. Quantum Gravity 27, 125007 (2010). arXiv:1001.5106
B.R. Majhi, E.C. Vagenas, Phys. Lett. B 701, 623 (2011). arXiv:1106.2292
H.P. Nollert, Class. Quantum Gravity 16, R159 (1999)
D. Kimberly, J. Magueijo, J. Medeiros, Phys. Rev. D 70, 084007 (2004). arXiv:gr-qc/0303067
J. Magueijo, L. Smolin, Class. Quantum Gravity 21, 1725 (2004). arXiv:gr-qc/0305055
J. Hackett, Class. Quantum Gravity 23, 3833 (2006)
F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007). arXiv:gr-qc/0611024
Y. Ling, X. Li, B. Hu, Mod. Phys. Lett. A 22, 2749 (2007). arXiv:gr-qc/0512084
P. Galan, G.A. Mena Marugan, Phys. Rev. D 74, 044035 (2006). arXiv:gr-qc/0608061
G. Garattnti, Phys. Lett. B 685, 329 (2010). arXiv:0902.3927 [gr-qc]
C.Z. Liu, J.Y. Zhu, Chin. Phys. B 18, 416 (2009). arXiv:gr-qc/0703058
G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002). arXiv:gr-qc/0012051
G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238
J. Kowalski-Glikman, Phys. Lett. A 286, 391 (2001). arXiv:hep-th/0102098
J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002). arXiv:hep-th/0112090
J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003). arXiv:gr-qc/0207085
C. Heuson, arXiv:gr-qc/0606124
P. Galan, G.A. Mena Marugan, Phys. Rev. D 70, 124003 (2004). arXiv:gr-qc/0411089
P. Galan, G.A. Mena Marugan, Phys. Rev. D 72, 044019 (2005). arXiv:gr-qc/0507098
S. Mignemi, Phys. Rev. D 68, 065029 (2003)
F. Hinterleitner, Phys. Rev. D 71, 025016 (2005)
R.J. Adler, P. Chen, D.I. Santiago, Gen. Relativ. Gravit. 33, 2101 (2001). arXiv:gr-qc/0106080
P. Chen, R.J. Adler, Nucl. Phys. Proc. Suppl. 124, 103 (2003). arXiv:gr-qc/0205106
Y. Ling, B. Hu, X. Li, Phys. Rev. D 73, 087702 (2006). arXiv:gr-qc/0512083
D.N. Page, New J. Phys. 7, 203 (2005). arXiv:hep-th/0409024
A.J.M. Medved, E.C. Vagenas, Phys. Rev. D 70, 124021 (2004). arXiv:hep-th/0411022
Acknowledgements
I would like to thank Prof. Y. Lin for helpful discussions. Also, I would like to thank the referees for helpful comments and advices. The work was supported by the National Natural Science Foundation of China (No. 11045005) and the Natural Science Foundation of Zhejiang Province of China (No. Y6090739).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, CZ. Black hole spectroscopy via adiabatic invariant in a quantum corrected spacetime. Eur. Phys. J. C 72, 2009 (2012). https://doi.org/10.1140/epjc/s10052-012-2009-y
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjc/s10052-012-2009-y
Keywords
- Black Hole
- Black Hole Entropy
- Area Spectrum
- Area Spacing
- Entropy Spectrum