Skip to main content
Log in

Asymptotically safe phantom cosmology

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider quantum modifications to phantom cosmology in a Friedmann–Robertson–Walker spacetime. The cosmological evolution equations improved by the renormalization group are obtained. For exponential potential, we find two types of cosmological fixed point; the renormalization group scale either freezes in, or continues to evolve with scale factor. We discuss the implications of each of these points, and investigate especially whether the big rip can be avoided. If the fixed point of renormalization group flow coincides with the cosmological fixed point, the universe will be dominated by dark matter and will be free from the big rip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.-J. Yang, S.N. Zhang, Mon. Not. R. Astron. Soc. 407, 1835 (2010)

    Article  ADS  Google Scholar 

  2. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  3. S.M. Carroll, M. Hoffman, M. Trodden, Phys. Rev. D 68, 023509 (2003)

    Article  ADS  Google Scholar 

  4. S.M. Carroll, A. Felice, M. Trodden, Phys. Rev. D 71, 023525 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  6. A. Melchiorri, L. Mersini, C.J. Odman, M. Trodden, Phys. Rev. D 68, 043509 (2003)

    Article  ADS  Google Scholar 

  7. E. Gaztanaga, R. Miquel, E. Sanchez, Phys. Rev. Lett. 103, 091302 (2009)

    Article  ADS  Google Scholar 

  8. K.G. Wilson, J. Kogut, Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  9. S. Weinberg, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (1979), pp. 190–831

    Google Scholar 

  10. D.F. Litim, AIP Conf. Proc. 841, 322 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Niedermaier, M. Reuter, Living Rev. Relativ. 9, 5 (2006)

    ADS  Google Scholar 

  12. R. Percacci, in Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, ed. by D. Oriti (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  13. A. Bonanno, M. Reuter, Phys. Rev. D 65, 043508 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Reuter, H. Weyer, Phys. Rev. D 69, 104022 (2004)

    Article  ADS  Google Scholar 

  15. Y.-F. Cai, D.A. Easson, Phys. Rev. D 84, 103502 (2011)

    Article  ADS  Google Scholar 

  16. D. Benedetti, P.F. Machado, F. Saueressig, Mod. Phys. Lett. A 24, 2233 (2009)

    Article  ADS  MATH  Google Scholar 

  17. W. Souma, Prog. Theor. Phys. 102, 181 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  18. O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Reuter, F. Saueressig, Phys. Rev. D 65, 065016 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. D.F. Litim, arXiv:0810.3675

  21. P.F. Machado, F. Saueressig, Phys. Rev. D 77, 124045 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M. Hindmarsh, D. Litim, C. Rahmede, J. Cosmol. Astropart. Phys. 07, 019 (2011)

    Article  ADS  Google Scholar 

  24. C. Ahn, C. Kim, E.V. Linder, Phys. Lett. B 704, 10 (2011)

    Article  ADS  Google Scholar 

  25. A. Contillo, M. Hindmarsh, C. Rahmede, Phys. Rev. D 85, 043501 (2012)

    Article  ADS  Google Scholar 

  26. A. Bonanno, M. Reuter, Phys. Lett. B 527, 9 (2002)

    Article  ADS  MATH  Google Scholar 

  27. M. Reuter, F. Saueressig, J. Cosmol. Astropart. Phys. 09, 012 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. F. Bauer, Class. Quantum Gravity 22, 3533 (2005)

    Article  ADS  MATH  Google Scholar 

  29. B. Guberina, R. Horvat, H. Stefancic, Phys. Rev. D 67, 083001 (2003)

    Article  ADS  Google Scholar 

  30. I.L. Shapiro, J. Sola, J. High Energy Phys. 02, 006 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  31. I.L. Shapiro, J. Sola, Phys. Lett. B 475, 236 (2000)

    Article  ADS  Google Scholar 

  32. I.L. Shapiro, J. Sola, Phys. Lett. B 682, 105 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Casadio, S.D.H. Hsu, B. Mirza, Phys. Lett. B 695, 317 (2011)

    Article  ADS  Google Scholar 

  34. S. Domazet, H. Stefancic, Phys. Lett. B 703, 1 (2011)

    ADS  Google Scholar 

  35. D.C. Rodrigues, P.S. Letelier, I.L. Shapiro, J. Cosmol. Astropart. Phys. 04, 020 (2010)

    Article  ADS  Google Scholar 

  36. C. Wetterich, Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  37. A. Silvestri, M. Trodden, Rep. Prog. Phys. 72, 096901 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. E.J. Copeland, A. R Liddle, D. Wands, Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

  39. R.-J. Yang, X.-T. Gao, Class. Quantum Gravity 28, 065012 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  40. S. Capozziello, S. Nojiri, S.D. Odintsov, Phys. Lett. B 632, 597 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Jia Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, RJ. Asymptotically safe phantom cosmology. Eur. Phys. J. C 72, 1948 (2012). https://doi.org/10.1140/epjc/s10052-012-1948-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1948-7

Keywords

Navigation