Skip to main content
Log in

A numerical study of the 2-flavour Schwinger model with dynamical overlap hypercube fermions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present numerical results for the 2-flavour Schwinger model with dynamical chiral lattice fermions. We insert an approximately chiral hypercube Dirac operator into the overlap formula to construct the overlap hypercube operator. This is an exact solution to the Ginsparg–Wilson relation, with an excellent level of locality and scaling. Due to its similarity with the hypercubic kernel, a low polynomial in this kernel provides a numerically efficient Hybrid Monte Carlo force. We measure the microscopic Dirac spectrum and discuss the corresponding scale-invariant parameter, which takes a surprising form. This is an interesting case, since Random Matrix Theory is unexplored for this setting, where the chiral condensate Σ vanishes in the chiral limit. We also measure Σ and the “pion” mass, in distinct topological sectors. In this context we discuss and probe the topological summation of observables by various methods, as well as the evaluation of the topological susceptibility. The feasibility of this summation is essential for the prospects of dynamical overlap fermions in QCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger, Phys. Rev. 128, 2425 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S.R. Coleman, R. Jackiw, L. Susskind, Ann. Phys. 93, 267 (1975)

    Article  ADS  Google Scholar 

  3. S.R. Coleman, Ann. Phys. 101, 239 (1976)

    Article  ADS  Google Scholar 

  4. Y. Hosotani, R. Rodriguez, J.E. Hetrick, S. Iso, hep-th/9606129

  5. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  6. P.C. Hohenberg, Phys. Rev. 158, 383 (1967)

    Article  ADS  Google Scholar 

  7. S.R. Coleman, Commun. Math. Phys. 31, 259 (1973)

    Article  ADS  MATH  Google Scholar 

  8. A.V. Smilga, Phys. Lett. B 278, 371 (1992)

    Article  ADS  Google Scholar 

  9. J.E. Hetrick, Y. Hosotani, S. Iso, Phys. Lett. B 350, 92 (1995)

    Article  ADS  Google Scholar 

  10. A.V. Smilga, Phys. Rev. D 55, 443 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Gattringer, I. Hip, C.B. Lang, Phys. Lett. B 466, 287 (1999)

    Article  ADS  Google Scholar 

  12. M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)

    Article  ADS  Google Scholar 

  13. T. Banks, A. Casher, Nucl. Phys. B 169, 103 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Creutz, arXiv:hep-lat/0511052

  15. T. Wilke, T. Guhr, T. Wettig, Phys. Rev. D 57, 6486 (1998)

    Article  ADS  Google Scholar 

  16. S.M. Nishigaki, P.H. Damgaard, T. Wettig, Phys. Rev. D 58, 087704 (1998)

    Article  ADS  Google Scholar 

  17. P.H. Damgaard, S.M. Nishigaki, Nucl. Phys. B 518, 495 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. P.H. Damgaard, S.M. Nishigaki, Phys. Rev. D 63, 045012 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Bietenholz, K. Jansen, S. Shcheredin, J. High Energy Phys. 07, 033 (2003)

    Article  ADS  Google Scholar 

  20. L. Giusti, M. Lüscher, P. Weisz, H. Wittig, J. High Energy Phys. 11, 023 (2003)

    Article  ADS  Google Scholar 

  21. D. Galletly et al. (QCDSF-UKQCD Collaboration), Nucl. Phys. B, Proc. Suppl. 129, 456 (2004)

    Article  Google Scholar 

  22. W. Bietenholz, S. Shcheredin, Nucl. Phys. B 754, 17 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Shcheredin, Ph.D. Thesis, arXiv:hep-lat/0502001

  24. W. Bietenholz, Habilitation Thesis. Fortschr. Phys. 56, 107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. P.H. Damgaard, Phys. Lett. B 608, 162 (2001)

    MATH  Google Scholar 

  26. T. DeGrand, R. Hoffmann, S. Schäfer, Z. Liu, Phys. Rev. D 74, 054501 (2006)

    Article  ADS  Google Scholar 

  27. T. DeGrand, Z. Liu, S. Schäfer, Phys. Rev. D 74, 094504 (2006)

    Article  ADS  Google Scholar 

  28. T. DeGrand, S. Schäfer, Phys. Rev. D 76, 094509 (2007)

    Article  ADS  Google Scholar 

  29. H. Fukaya et al. (JLQCD Collaboration), Phys. Rev. Lett. 98, 172001 (2007)

    Article  ADS  Google Scholar 

  30. H. Fukaya et al., Phys. Rev. D 76, 054503 (2007)

    Article  ADS  Google Scholar 

  31. H. Fukaya et al., Phys. Rev. D 77, 074503 (2008)

    Article  ADS  Google Scholar 

  32. S. Aoki et al. (JLQCD and TWQCD Collaboration), Phys. Rev. D 80, 034508 (2009)

    Article  ADS  Google Scholar 

  33. J. Noaki et al., Phys. Rev. D 81, 034502 (2010)

    Article  ADS  Google Scholar 

  34. H. Fukaya et al. (JLQCD and TWQCD Collaboration), Phys. Rev. D 83, 074501 (2011)

    Article  ADS  Google Scholar 

  35. S. Dürr, C. Hoelbling, Phys. Rev. D 71, 054501 (2005)

    Article  ADS  Google Scholar 

  36. P.H. Damgaard, U.M. Heller, R. Narayanan, B. Svetitsky, Phys. Rev. D 71, 114503 (2005)

    Article  ADS  Google Scholar 

  37. C.B. Lang, T.K. Pany, Nucl. Phys. B 513, 645 (1998)

    Article  ADS  Google Scholar 

  38. A. Bode, U.M. Heller, R.G. Edwards, R. Narayanan, in Proceedings of the Workshop “Lattice Fermions and Structure of the Vacuum”, ed. by V. Mitrjushkin, G. Schierholz, vol. C553, Dubna, Russia (Kluwer Academic, Dordrecht, 2000), p. 65. hep-lat/9912043

    Google Scholar 

  39. M. Lüscher, Commun. Math. Phys. 293, 899 (2010)

    Article  MATH  Google Scholar 

  40. M. Lüscher, J. High Energy Phys. 1008, 071 (2010)

    Article  Google Scholar 

  41. M. Lüscher, in PoS(LATTICE2010) (2010), 015

    Google Scholar 

  42. J. Volkholz, W. Bietenholz, S. Shcheredin, in PoS(LAT2006) (2006), 040

    Google Scholar 

  43. W. Bietenholz, S. Shcheredin, J. Volkholz, in PoS(LAT2007) (2007), 064

    Google Scholar 

  44. W. Bietenholz, I. Hip, in PoS(LAT2008) (2008), 079

    Google Scholar 

  45. W. Bietenholz, I. Hip, in PoS(LAT2009) (2009), 086

    Google Scholar 

  46. W. Bietenholz, U.-J. Wiese, Nucl. Phys. B 464, 319 (1996)

    Article  ADS  Google Scholar 

  47. M. Lüscher, Phys. Lett. B 428, 342 (1998)

    Article  ADS  Google Scholar 

  48. P.H. Ginsparg, K.G. Wilson, Phys. Rev. D 25, 2649 (1982)

    Article  ADS  Google Scholar 

  49. U.-J. Wiese, Phys. Lett. B 315, 417 (1993)

    Article  ADS  Google Scholar 

  50. W. Bietenholz, U.-J. Wiese, Nucl. Phys. B, Proc. Suppl. 34, 516 (1994)

    Article  ADS  Google Scholar 

  51. W. Bietenholz, U.-J. Wiese, Phys. Lett. B 378, 222 (1996)

    Article  ADS  Google Scholar 

  52. P. Hasenfratz, Nucl. Phys. B, Proc. Suppl. 63, 53 (1998)

    Article  ADS  Google Scholar 

  53. P. Hasenfratz, V. Laliena, F. Niedermayer, Phys. Lett. B 427, 125 (1998)

    Article  ADS  Google Scholar 

  54. P. Hasenfratz, Nucl. Phys. B 525, 401 (1998)

    Article  ADS  Google Scholar 

  55. D.B. Kaplan, Phys. Lett. B 288, 342 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  56. Y. Shamir, Nucl. Phys. B 406, 90 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  57. Y. Kikukawa, H. Neuberger, Nucl. Phys. B 513, 735 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. H. Neuberger, Phys. Lett. B 417, 141 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  59. H. Neuberger, Phys. Lett. B 427, 353 (1998)

    Article  ADS  Google Scholar 

  60. W. Bietenholz, R. Brower, S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B, Proc. Suppl. 53, 921 (1997)

    Article  ADS  Google Scholar 

  61. W. Bietenholz, Eur. Phys. J. C 6, 537 (1999)

    ADS  Google Scholar 

  62. W. Bietenholz, I. Hip, Nucl. Phys. B 570, 423 (2000)

    Article  ADS  Google Scholar 

  63. W. Bietenholz, I. Hip, Nucl. Phys. B, Proc. Suppl. 83, 600 (2000)

    ADS  Google Scholar 

  64. J. van den Eshof, A. Frommer, Th. Lippert, K. Schilling, H.A. van der Vorst, Comput. Phys. Commun. 146, 203 (2002)

    Article  ADS  MATH  Google Scholar 

  65. P. Hernández, K. Jansen, M. Lüscher, Nucl. Phys. B 552, 363 (1999)

    Article  ADS  MATH  Google Scholar 

  66. W. Bietenholz, in Proceedings of the International Workshop on Non-Perturbative Methods and Lattice QCD, ed. by X.-Q. Luo, E.B. Gregory, Guangzhou, China (World Scientific, Singapore, 2001), p. 3. hep-lat/0007017

    Chapter  Google Scholar 

  67. W. Bietenholz, Nucl. Phys. B 644, 223 (2002)

    Article  ADS  MATH  Google Scholar 

  68. Z. Fodor, in PoS(CPOD07) (2007), 027

    Google Scholar 

  69. S. Shcheredin, E. Laermann, in PoS(LAT2006) (2006), 146

    Google Scholar 

  70. P. Hasenfratz, F. Niedermayer, Nucl. Phys. B 414, 785 (1994)

    Article  ADS  Google Scholar 

  71. N. Christian, K. Jansen, K.-I. Nagai, B. Pollakowski, Nucl. Phys. B 739, 60 (2006)

    Article  ADS  MATH  Google Scholar 

  72. L. Giusti, C. Hoelbling, M. Lüscher, H. Wittig, Comput. Phys. Commun. 153, 31 (2003)

    Article  ADS  MATH  Google Scholar 

  73. W. Bietenholz, T. Chiarappa, K. Jansen, K.-I. Nagai, S. Shcheredin, J. High Energy Phys. 0402, 023 (2004)

    Article  ADS  Google Scholar 

  74. H. Fukaya, S. Hashimoto, K. Ogawa, Prog. Theor. Phys. 114, 451 (2005)

    Article  ADS  MATH  Google Scholar 

  75. L. Giusti, P. Hernández, M. Laine, P. Weisz, H. Wittig, J. High Energy Phys. 0401, 003 (2004)

    Article  ADS  Google Scholar 

  76. W. Bietenholz et al. (QCDSF Collaboration), Phys. Lett. B 687, 410 (2010)

    Article  ADS  Google Scholar 

  77. W. Bietenholz et al. (QCDSF Collaboration), J. Phys. Conf. Ser. 287, 012016 (2011)

    Article  ADS  Google Scholar 

  78. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Phys. Lett. B 195, 216 (1987)

    Article  ADS  Google Scholar 

  79. I. Montvay, G. Münster, Quantum Fields on a Lattice (Cambridge University Press, Cambridge, 1994). Section 7.6

    Book  Google Scholar 

  80. A.D. Kennedy, hep-lat/0607038

  81. M. Lüscher, arXiv:1002.4232 [hep-lat]

  82. Z. Fodor, S.D. Katz, K.K. Szabo, J. High Energy Phys. 0408, 003 (2004)

    Article  ADS  Google Scholar 

  83. G.I. Egri, Z. Fodor, S.D. Katz, K.K. Szabo, J. High Energy Phys. 0601, 049 (2006)

    Article  ADS  Google Scholar 

  84. N. Cundy, S. Krieg, Th. Lippert, A. Schäfer, Comput. Phys. Commun. 180, 201 (2009)

    Article  ADS  Google Scholar 

  85. W. Bietenholz, H. Dilger, Nucl. Phys. B 549, 335 (1999)

    Article  ADS  Google Scholar 

  86. J.C. Sexton, D.H. Weingarten, Nucl. Phys. B 380, 363 (1992)

    Article  Google Scholar 

  87. N. Christian, K. Jansen, K.-I. Nagai, B. Pollakowski, in PoS(LAT2005) (2005), 239

    Google Scholar 

  88. R.G. Edwards, I. Horváth, A.D. Kennedy, Nucl. Phys. B 484, 375 (1997)

    Article  ADS  Google Scholar 

  89. C. Liu, A. Jaster, K. Jansen, Nucl. Phys. B 524, 603 (1998)

    Article  ADS  Google Scholar 

  90. B. Joo, B. Pendleton, A.D. Kennedy, A.C. Irving, J.C. Sexton, S.M. Pickles, S.P. Booth (UKQCD Collaboration), Phys. Rev. D 62, 114501 (2000)

    Article  ADS  Google Scholar 

  91. S. Dimopoulos, Nucl. Phys. B 168, 69 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  92. M.E. Peskin, Nucl. Phys. B 175, 197 (1980)

    Article  ADS  Google Scholar 

  93. J.P. Preskill, Nucl. Phys. B 177, 21 (1981)

    Article  ADS  Google Scholar 

  94. W. Bietenholz, Int. J. Mod. Phys. A 25, 1699 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. M.A. Halasz, J.J.M. Verbaarschot, Phys. Rev. Lett. 74, 3920 (1995)

    Article  ADS  Google Scholar 

  96. R.G. Edwards, U.M. Heller, J.E. Kiskis, R. Narayanan, Phys. Rev. Lett. 82, 4188 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. P.H. Damgaard, U.M. Heller, R. Niclasen, K. Rummukainen, Nucl. Phys. B 583, 347 (2000)

    Article  ADS  Google Scholar 

  98. F. Farchioni, P. de Forcrand, I. Hip, C.B. Lang, K. Splittorff, Phys. Rev. D 62, 014503 (2000)

    Article  ADS  Google Scholar 

  99. T. Kovács, Phys. Rev. Lett. 104, 031601 (2010)

    Article  ADS  Google Scholar 

  100. H. Leutwyler, A. Smilga, Phys. Rev. D 46, 5607 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  101. P.H. Damgaard, private communication

  102. S. Dürr, Z. Fodor, C. Hoelbling, T. Kurth, J. High Energy Phys. 0704, 055 (2007)

    Article  Google Scholar 

  103. S. Dürr, Nucl. Phys. B 611, 281 (2001), and private communication

    Article  ADS  MATH  Google Scholar 

  104. R. Brower, S. Chandrasekharan, J.W. Negele, U.-J. Wiese, Phys. Lett. B 560, 64 (2003)

    Article  ADS  MATH  Google Scholar 

  105. S. Aoki, H. Fukaya, S. Hashimoto, T. Onogi, Phys. Rev. D 76, 054508 (2007)

    Article  ADS  Google Scholar 

  106. S. Aoki et al. (JLQCD and TWQCD Collaborations), Phys. Lett. B 665, 294 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bietenholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bietenholz, W., Hip, I., Shcheredin, S. et al. A numerical study of the 2-flavour Schwinger model with dynamical overlap hypercube fermions. Eur. Phys. J. C 72, 1938 (2012). https://doi.org/10.1140/epjc/s10052-012-1938-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1938-9

Keywords

Navigation