Skip to main content
Log in

Modified Chaplygin gas as a unified dark matter and dark energy model and cosmic constraints

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A modified Chaplygin gas model (MCG), ρ MCG/ρ MCG0=[B s +(1−B s )a −3(1+B)(1+α)]1/(1+α), as a unified dark matter model and dark energy model, is constrained by using current available cosmic observational data points which include type Ia supernovae, baryon acoustic oscillation and the 7-year full WMAP data points. As a contrast to the consideration in the literature, we do not separate the MCG into two components, i.e. dark mater and dark energy component, but we take it as a whole energy component—a unified dark sector. By using a Markov Chain Monte Carlo method, a tight constraint is obtained: \(\alpha= 0.000727_{- 0.00140- 0.00234}^{+ 0.00142+ 0.00391}\), \(B=0.000777_{- 0.000302- 0.000697}^{+ 0.000201+ 0.000915}\) and \(B_{s}= 0.782_{- 0.0162- 0.0329}^{+ 0.0163+ 0.0307}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000). arXiv:astro-ph/9904398

    ADS  Google Scholar 

  3. S.M. Carroll, Living Rev. Relativ. 4, 1 (2001). arXiv:astro-ph/0004075

    ADS  Google Scholar 

  4. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003). arXiv:astro-ph/0207347

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. T. Padmanabhan, Phys. Rep. 380, 235 (2003). arXiv:hep-th/0212290

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). arXiv:hep-th/0603057

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Li, X.D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011). arXiv:1103.5870 [astro-ph.CO]

    Article  ADS  Google Scholar 

  8. A.G. Riess et al., Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  9. S. Perlmutter et al., Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  10. M. Kunz, Phys. Rev. D 80, 123001 (2009)

    Article  ADS  Google Scholar 

  11. W. Hu, D.J. Eisenstein, Phys. Rev. D 59, 083509 (1999)

    Article  ADS  Google Scholar 

  12. C. Rubano, P. Scudellaro, Gen. Relativ. Gravit. 34, 1931 (2002)

    Article  MATH  Google Scholar 

  13. I. Wasserman, Phys. Rev. D 66, 123511 (2002)

    Article  ADS  Google Scholar 

  14. A.R. Liddle, L.A. Urena-Lopez, Phys. Rev. Lett. 97, 161301 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Kunz, A.R. Liddle, D. Parkinson, C. Gao, Phys. Rev. D 80, 083533 (2009)

    Article  ADS  Google Scholar 

  16. A. Avile’s, J.L. Cervantes-Cota, Phys. Rev. D 83, 023510 (2011)

    Article  ADS  Google Scholar 

  17. L.M. Reyes, J.E. Madriz Aguilar, L.A. Urena-Lopez, Phys. Rev. D 84, 027503 (2011)

    Article  ADS  Google Scholar 

  18. A. Aviles, J.L. Cervantes-Cota, Phys. Rev. D 84, 083515 (2011)

    Article  ADS  Google Scholar 

  19. L. Xu, Y. Wang, H. Noh, Phys. Rev. D 84, 123004 (2011). arXiv:1112.3701

    Article  ADS  Google Scholar 

  20. L. Xu, J. Lu, Y. Wang, Eur. Phys. J. C 72, 1883 (2012)

    Article  ADS  Google Scholar 

  21. J.D. Barrow, Nucl. Phys. B 310, 743 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  22. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  23. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Lett. B 575, 172 (2003)

    Article  ADS  Google Scholar 

  24. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 67, 063003 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  26. S.S. Costa, M. Ujevic, A.F. Santos, arXiv:gr-qc/0703140

  27. S. Li, Y.G. Ma, Y. Chen, Int. J. Mod. Phys. D 18, 1785 (2009)

    Article  ADS  MATH  Google Scholar 

  28. F.C. Santos, M.L. Bedran, V. Soares, Phys. Lett. B 646, 215 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  29. M.L. Bedran, V. Soares, M.E. Araujo, Phys. Lett. B 659, 462 (2008)

    Article  ADS  Google Scholar 

  30. J.D. Barrow, Phys. Lett. B 235, 40 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  31. S.D. Campo, R. Herrera, arXiv:0801.3251 [astro-ph]

  32. R. Herrera, arXiv:0805.1005 [gr-qc]

  33. R. Herrera, arXiv:0810.1074 [gr-qc]

  34. M. Jamil, M.A. Rashid, arXiv:0802.1146 [astro-ph]

  35. M. Jamil, M.U. Farooq, M.A. Rashid, arXiv:0901.2482 [gr-qc]

  36. D.J. Liu, X.Z. Li, arXiv:astro-ph/0501115

  37. U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Gravity 21, 5609 (2004). arXiv:gr-qc/0411015

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. C.J. Feng, X.Z. Li, arXiv:0909.5476 [astro-ph]

  39. L.P. Chimento, R. Lazkoz, arXiv:astro-ph/0411068

  40. W. Chakraborty, U. Debnath, arXiv:0705.4147 [gr-qc]

  41. U. Debnath, S. Chakraborty, arXiv:gr-qc/0601049

  42. A.K. Singhal, U. Debnath, arXiv:gr-qc/0701013

  43. J. Lu, L. Xu, J. Li, B. Chang, Y. Gui, H. Liu, Phys. Lett. B 662, 87 (2008)

    Article  ADS  Google Scholar 

  44. J. Lu, L. Xu, Y. Wu, M. Liu, Gen. Relativ. Gravit. 43, 819 (2011). arXiv:1105.1870 [astro-ph.CO]

    Article  ADS  MATH  Google Scholar 

  45. C.-P. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995)

    Article  ADS  Google Scholar 

  46. J. Hwang, H. Noh, Phys. Rev. D 65, 023512 (2001)

    Article  ADS  Google Scholar 

  47. http://cosmologist.info/cosmomc/

  48. A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002)

    Article  ADS  Google Scholar 

  49. http://camb.info/

  50. S. Burles, K.M. Nollett, M.S. Turner, Astrophys. J. 552, L1 (2001)

    Article  ADS  Google Scholar 

  51. A.G. Riess et al., Astrophys. J. 699, 539 (2009)

    Article  ADS  Google Scholar 

  52. http://lambda.gsfc.nasa.gov/product/map/current/

  53. W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    Article  ADS  Google Scholar 

  54. D.J. Eisenstein, W. Hu, Astrophys. J. 496, 605 (1998). arXiv:astro-ph/9709112

    Article  ADS  Google Scholar 

  55. J. Hamann et al., J. Cosmol. Astropart. Phys. 07, 022 (2010). arXiv:1003.3999

    Article  ADS  Google Scholar 

  56. R. Amanullah et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  57. L. Xu, Y. Wang, J. Cosmol. Astropart. Phys. 06, 002 (2010)

    Article  ADS  Google Scholar 

  58. L. Xu, Y. Wang, Phys. Rev. D 82, 043503 (2010)

    Article  ADS  Google Scholar 

  59. E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Wang, Y. & Noh, H. Modified Chaplygin gas as a unified dark matter and dark energy model and cosmic constraints. Eur. Phys. J. C 72, 1931 (2012). https://doi.org/10.1140/epjc/s10052-012-1931-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1931-3

Keywords

Navigation