Skip to main content
Log in

Associated production of a KK-graviton with a Higgs boson via gluon fusion at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In order to solve the hierarchy problem, several extra-dimensional models have received considerable attention. We have considered a process where a Higgs boson is produced in association with a KK-graviton (G KK) at the LHC. At the leading order, this process occurs through the gluon fusion mechanism gghG KK via a quark loop. We compute the cross section and examine some features of this process in the ADD model. We find that the quark in the loop does not decouple in the large quark-mass limit just as in the case of ggh process. We compute the cross section of this process for the case of the RS model also. We examine the feasibility of this process being observed at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  2. J.D. Lykken, arXiv:1005.1676 [hep-ph] and the references therein

  3. J. Ellis, arXiv:1102.5009 [hep-ph]

  4. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998). arXiv:hep-ph/9803315

    Article  ADS  Google Scholar 

  5. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. I. Antoniadis, Phys. Lett. B 246, 377 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Appelquist, H.C. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001). arXiv:hep-ph/0012100

    Article  ADS  Google Scholar 

  9. H. Davoudiasl, J.L. Hewett, T.G. Rizzo, Phys. Rev. Lett. 84, 2080 (2000). arXiv:hep-ph/9909255

    Article  ADS  Google Scholar 

  10. T. Han, J.D. Lykken, R.J. Zhang, Phys. Rev. D 59, 105006 (1999). arXiv:hep-ph/9811350

    Article  MathSciNet  ADS  Google Scholar 

  11. G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 544, 3–38 (1999). hep-ph/9811291

    Article  ADS  Google Scholar 

  12. E.A. Mirabelli, M. Perelstein, M.E. Peskin, Phys. Rev. Lett. 82, 2236 (1999). arXiv:hep-ph/9811337

    Article  ADS  Google Scholar 

  13. D.K. Ghosh, S. Raychaudhuri, Phys. Lett. B 495, 114–120 (2000). arXiv:hep-ph/0007354

    Article  ADS  Google Scholar 

  14. T. Kaluza, Sitz.ber. Preuss. Akad. Wiss. Berl., Math. Phys. 1921, 966 (1921)

    Google Scholar 

  15. O. Klein, Z. Phys. 37, 895 (1926) [Surveys High Energ. Phys. 5, 241 (1986)]

    Article  ADS  Google Scholar 

  16. D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B.R. Heckel, C.D. Hoyle, H.E. Swanson, Phys. Rev. Lett. 98, 021101 (2007). arXiv:hep-ph/0611184

    Article  ADS  Google Scholar 

  17. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1105, 085 (2011). arXiv:1103.4279 [hep-ex]

    Article  ADS  Google Scholar 

  18. W.D. Goldberger, M.B. Wise, Phys. Rev. D 60, 107505 (1999). arXiv:hep-ph/9907218

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Mathews, V. Ravindran, K. Sridhar, J. High Energy Phys. 0510, 031 (2005). arXiv:hep-ph/0506158

    Article  ADS  Google Scholar 

  20. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 051801 (2011). arXiv:1103.4650 [hep-ex]

    Article  ADS  Google Scholar 

  21. V.M. Abazov et al. (The D0 Collaboration), Phys. Rev. Lett. 104, 241802 (2010). arXiv:1004.1826 [hep-ex]

    Article  ADS  Google Scholar 

  22. M.C. Kumar, P. Mathews, V. Ravindran, S. Seth, J. Phys. G 38, 055001 (2011). arXiv:1004.5519 [hep-ph]

    Article  ADS  Google Scholar 

  23. M.C. Kumar, P. Mathews, V. Ravindran, S. Seth, Nucl. Phys. B 847, 54–92 (2011). arXiv:1011.6199 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  24. S. Karg, M. Kramer, Q. Li, D. Zeppenfeld, Phys. Rev. D 81, 094036 (2010). arXiv:0911.5095 [hep-ph]

    Article  ADS  Google Scholar 

  25. X. Gao, C.S. Li, J. Gao, J. Wang, R.J. Oakes, Phys. Rev. D 81, 036008 (2010). arXiv:0912.0199 [hep-ph]

    Article  ADS  Google Scholar 

  26. A. Shivaji, V. Ravindran, P. Agrawal, J. High Energy Phys. 1202, 057 (2012). arXiv:1111.6479 [hep-ph]

    Article  ADS  Google Scholar 

  27. J.A.M. Vermaseren, arXiv:math-ph/0010025

  28. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 153, 365 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  29. G.J. van Oldenborgh, J.A.M. Vermaseren, Z. Phys. C 46, 425 (1990)

    Article  MathSciNet  Google Scholar 

  30. P. Agrawal, G. Ladinsky, Phys. Rev. D 63, 117504 (2001). arXiv:hep-ph/0011346

    Article  ADS  Google Scholar 

  31. G.J. van Oldenborgh, Comput. Phys. Commun. 66, 1 (1991)

    Article  ADS  MATH  Google Scholar 

  32. T.G. Rizzo, Phys. Rev. D 22, 178 (1980). Addendum-ibid. D 22, 1824 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  34. C. Anastasiou, S. Bucherer, Z. Kunszt, J. High Energy Phys. 0910, 068 (2009). arXiv:0907.2362 [hep-ph]

    Article  ADS  Google Scholar 

  35. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 1106, 128 (2011). arXiv:1106.0522 [hep-ph]

    Article  ADS  Google Scholar 

  36. A. Djouadi, Phys. Rep. 457, 1 (2008). arXiv:hep-ph/0503172

    Article  ADS  Google Scholar 

  37. T. Appelquist, J. Carazzone, Phys. Rev. D 11, 2856 (1975)

    Article  ADS  Google Scholar 

  38. H.M. Georgi, S.L. Glashow, M.E. Machacek, D.V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978)

    Article  ADS  Google Scholar 

  39. A. Pak, M. Rogal, M. Steinhauser, J. High Energy Phys. 1002, 025 (2010). arXiv:0911.4662 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadip Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivaji, A., Mitra, S. & Agrawal, P. Associated production of a KK-graviton with a Higgs boson via gluon fusion at the LHC. Eur. Phys. J. C 72, 1922 (2012). https://doi.org/10.1140/epjc/s10052-012-1922-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1922-4

Keywords

Navigation