Skip to main content
Log in

On the possibility to measure the π 0γγ decay width and the γ γπ 0 transition form factor with the KLOE-2 experiment

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A possibility of KLOE-2 experiment to measure the width \(\varGamma_{\pi^{0} \to\gamma\gamma}\) and the π 0 γγ form factor F(Q 2) at low invariant masses of the virtual photon in the space-like region is considered. This measurement is an important test of the strong interaction dynamics at low energies. The feasibility is estimated on the basis of a Monte-Carlo simulation. The expected accuracy for \(\varGamma_{\pi^{0} \to\gamma\gamma}\) is at a per cent level, which is better than the current experimental world average and theory. The form factor will be measured for the first time at Q 2≤0.1 GeV2 in the space-like region. The impact of these measurements on the accuracy of the pion-exchange contribution to the hadronic light-by-light scattering part of the anomalous magnetic moment of the muon is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Adler, Phys. Rev. 177, 2426–2438 (1969)

    Article  ADS  Google Scholar 

  2. J.S. Bell, R. Jackiw, Nuovo Cimento A 60, 47–61 (1969)

    Article  ADS  Google Scholar 

  3. S.L. Adler, W.A. Bardeen, Phys. Rev. 182, 1517–1536 (1969)

    Article  ADS  Google Scholar 

  4. G. ’t Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P. Mitter et al., NATO Adv.Study Inst., Ser. B, Phys. 59, 1–438 (1980)

    Google Scholar 

  5. K. Kampf, B. Moussallam, Phys. Rev. D 79, 076005 (2009)

    Article  ADS  Google Scholar 

  6. J. Bijnens, K. Kampf, Nucl. Phys. B, Proc. Suppl. 207–208, 220–223 (2010)

    Article  Google Scholar 

  7. H. Primakoff, Phys. Rev. 81, 899 (1951)

    Article  ADS  Google Scholar 

  8. K. Nakamura, J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  9. H.W. Atherton et al., Phys. Lett. B 158, 81 (1985)

    Article  ADS  Google Scholar 

  10. I. Larin et al., Phys. Rev. Lett. 106, 162303 (2011)

    Article  ADS  Google Scholar 

  11. M.M. Kaskulov, U. Mosel, Phys. Rev. C 84, 065206 (2011)

    Article  ADS  Google Scholar 

  12. G. Amelino-Camelia et al., Eur. Phys. J. C 68, 619–681 (2010)

    Article  ADS  Google Scholar 

  13. E. Abouzaid et al., Phys. Rev. Lett. 100, 182001 (2008)

    Article  ADS  Google Scholar 

  14. H.J. Behrend et al., Z. Phys. C 49, 401–410 (1991)

    Article  Google Scholar 

  15. J. Gronberg et al., Phys. Rev. D 57, 33–54 (1998)

    Article  ADS  Google Scholar 

  16. B. Aubert et al., Phys. Rev. D 80, 052002 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. K. Melnikov, A. Vainshtein, Phys. Rev. D 70, 113006 (2004)

    Article  ADS  Google Scholar 

  18. J. Prades, E. de Rafael, A. Vainshtein, in Lepton Dipole Moments, ed. by Lee B. Roberts, William J. Marciano. Advanced Series on Directions in High Energy Physics, vol. 20 (2009), pp. 303–317

    Chapter  Google Scholar 

  19. A. Nyffeler, Phys. Rev. D 79, 073012 (2009)

    Article  ADS  Google Scholar 

  20. F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1–110 (2009)

    Article  ADS  Google Scholar 

  21. T. Goecke, C.S. Fischer, R. Williams, Phys. Rev. D 83, 094006 (2011)

    Article  ADS  Google Scholar 

  22. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011)

    Article  ADS  Google Scholar 

  23. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011)

    Article  ADS  Google Scholar 

  24. G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006)

    Article  ADS  Google Scholar 

  25. R.M. Carey et al., FERMILAB-PROPOSAL-0989, 2009

  26. T. Mibe (J-PARC g−2 collaboration), Chin. Phys. C 34, 745 (2010)

    Article  ADS  Google Scholar 

  27. F.E. Low, Phys. Rev. 120, 582–583 (1960)

    Article  ADS  Google Scholar 

  28. D. Williams et al., Phys. Rev. D 38, 1365 (1988)

    Article  ADS  Google Scholar 

  29. J. Parisi, P. Kessler, Phys. Rev. D 5, 2229–2237 (1972)

    Article  ADS  Google Scholar 

  30. H. Terazawa, Rev. Mod. Phys. 45, 615–662 (1973)

    Article  ADS  Google Scholar 

  31. G. Alexander et al., Nuovo Cimento A 107, 837–862 (1994)

    Article  ADS  Google Scholar 

  32. D. Babusci et al., Nucl. Instrum. Methods Phys. Res. A 617, 81–84 (2010)

    Article  ADS  Google Scholar 

  33. F. Archilli et al., Nucl. Instrum. Methods Phys. Res. A 617, 266–268 (2010)

    Article  ADS  Google Scholar 

  34. H. Czyż, S. Ivashyn, Comput. Phys. Commun. 182, 1338–1349 (2011)

    Article  ADS  Google Scholar 

  35. I. Agapov, G.A. Blair, S. Malton, L. Deacon, Nucl. Instrum. Methods Phys. Res. A 606, 708–712 (2009)

    Article  ADS  Google Scholar 

  36. M. Adinolfi et al., Nucl. Instrum. Methods Phys. Res. A 482, 364–386 (2002)

    Article  ADS  Google Scholar 

  37. C.M. Carloni Calame, C. Lunardini, G. Montagna, O. Nicrosini, F. Piccinini, Nucl. Phys. B 584, 459 (2000)

    Article  ADS  Google Scholar 

  38. G. Balossini, C.M. Carloni Calame, G. Montagna, O. Nicrosini, F. Piccinini, Nucl. Phys. B 758, 227 (2006)

    Article  ADS  Google Scholar 

  39. M. Knecht, A. Nyffeler, Eur. Phys. J. C 21, 659–678 (2001)

    Article  ADS  Google Scholar 

  40. F. Farzanpay et al., Phys. Lett. B 278, 413–418 (1992)

    Article  ADS  Google Scholar 

  41. R. Meijer Drees et al., Phys. Rev. D 45, 1439–1447 (1992)

    Article  ADS  Google Scholar 

  42. G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359–365 (1979)

    Article  ADS  Google Scholar 

  43. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  44. S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 1808 (1981)

    Article  ADS  Google Scholar 

  45. F. Jegerlehner, Acta Phys. Pol. B 38, 3021 (2007)

    ADS  Google Scholar 

  46. F. Jegerlehner, The Anomalous Magnetic Moment of the Muon (Springer, Berlin, 2008)

    Google Scholar 

  47. L. Cappiello, O. Cata, G. D’Ambrosio, Phys. Rev. D 83, 093006 (2011)

    Article  ADS  Google Scholar 

  48. A. Nyffeler, PoS CD09, 080 (2009)

    Google Scholar 

  49. J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971)

    MathSciNet  ADS  Google Scholar 

  50. E. Witten, Nucl. Phys. B 223, 422–432 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  51. B.A. Li (2011). arXiv:1109.1467

  52. A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov, Eur. Phys. J. C 71, 1702 (2011)

    Article  ADS  Google Scholar 

  53. P. del Amo Sanchez et al., Phys. Rev. D 84, 052001 (2011)

    Article  ADS  Google Scholar 

  54. P. Kroll, Eur. Phys. J. C 71, 1623 (2011)

    Article  ADS  Google Scholar 

  55. S.J. Brodsky, F.-G. Cao, G.F. de Teramond, Phys. Rev. D 84, 075012 (2011)

    Article  ADS  Google Scholar 

  56. A.P. Bakulev, S.V. Mikhailov, A.V. Pimikov, N.G. Stefanis, Phys. Rev. D 84, 034014 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. Ivashyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babusci, D., Czyż, H., Gonnella, F. et al. On the possibility to measure the π 0γγ decay width and the γ γπ 0 transition form factor with the KLOE-2 experiment. Eur. Phys. J. C 72, 1917 (2012). https://doi.org/10.1140/epjc/s10052-012-1917-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1917-1

Keywords

Navigation