Skip to main content
Log in

Particle scattering by a test fluid on a Schwarzschild spacetime: the equation of state matters

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The motion of a massive test particle in a Schwarzschild spacetime surrounded by a perfect fluid with equation of state p 0= 0 is investigated. Deviations from geodesic motion are analyzed as a function of the parameter w, ranging from w=1, which corresponds to the case of massive free scalar fields, down into the so-called “phantom” energy, with w<−1. It is found that the interaction with the fluid leads to capture (escape) of the particle trajectory in the case 1+w>0 (<0), respectively. Based on this result, it is argued that inspection of the trajectories of test particles in the vicinity of a Schwarzschild black hole with matter around may offer a new means of gaining insights into the nature of cosmic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Poynting, Radiation in the solar system: its effect on temperature and its pressure on small bodies. Philos. Trans. R.. Soc. 203, 525 (1903)

    Google Scholar 

  2. H.P. Robertson, Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 97, 423 (1937)

    ADS  MATH  Google Scholar 

  3. J.N. Islam, An Introduction to Mathematical Cosmology (Cambridge Univ. Press, Cambridge, 1992)

    MATH  Google Scholar 

  4. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1973)

    Google Scholar 

  5. V. Sahni, Dark matter and dark energy. Lect. Notes Phys. 653, 141 (2004)

    ADS  Google Scholar 

  6. A. Vikman, Can dark energy evolve to the phantom? Phys. Rev. D 71, 023515 (2005)

    Article  ADS  Google Scholar 

  7. L. Baum, P.H. Frampton, Turnaround in cyclic cosmology. Phys. Rev. Lett. 98, 071301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Brevik, O. Gorbunova, S. Nojiri, S.D. Odintsov, On isotropic turbulence in the dark fluid universe. Eur. Phys. J. C 71, 1629 (2011)

    Article  ADS  Google Scholar 

  9. D. Bini, R. Jantzen, L. Stella, The general relativistic Poynting–Robertson effect. Class. Quantum Gravity 26, 055009 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Bini, A. Geralico, R.T. Jantzen, O. Semerák, L. Stella, The general relativistic Poynting–Robertson effect: II. A photon flux with nonzero angular momentum. Class. Quantum Gravity 28, 035008 (2011)

    Article  ADS  Google Scholar 

  11. D. Bini, A. Geralico, R.T. Jantzen, O. Semerák, Poynting–Robertson effect in the Vaidya spacetime. Class. Quantum Gravity 28, 245019 (2011)

    Article  ADS  Google Scholar 

  12. D. Bini, A. Geralico, Scattering by an electromagnetic radiation field. Phys. Rev. D 85, 044001 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, D., Geralico, A. & Succi, S. Particle scattering by a test fluid on a Schwarzschild spacetime: the equation of state matters. Eur. Phys. J. C 72, 1913 (2012). https://doi.org/10.1140/epjc/s10052-012-1913-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1913-5

Keywords

Navigation