Skip to main content

FastJet user manual

(for version 3.0.2)

Abstract

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2→1 sequential recombination jet algorithms for pp and e + e collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

References

  1. G. Sterman, S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977)

    ADS  Article  Google Scholar 

  2. S. Moretti, L. Lonnblad, T. Sjostrand, New and old jet clustering algorithms for electron positron events. J. High Energy Phys. 9808, 001 (1998). arXiv:hep-ph/9804296

    ADS  Article  Google Scholar 

  3. G.C. Blazey et al., hep-ex/0005012

  4. S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Tonnesmann, Prog. Part. Nucl. Phys. 60, 484 (2008). arXiv:0712.2447 [hep-ph]

    ADS  Article  Google Scholar 

  5. G.P. Salam, Eur. Phys. J. C 67, 637–686 (2010). arXiv:0906.1833 [hep-ph]

    ADS  Article  Google Scholar 

  6. A. Ali, G. Kramer, Eur. Biophys. J. 36, 245–326 (2011). arXiv:1012.2288 [hep-ph]

    Google Scholar 

  7. http://www.gnu.org/licenses/gpl-2.0.html

  8. S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Nucl. Phys. B 406, 187 (1993)

    ADS  Article  Google Scholar 

  9. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). hep-ph/9305266

    ADS  Article  Google Scholar 

  10. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). hep-ph/0512210

    ADS  Article  Google Scholar 

  11. M. Seymour, http://hepwww.rl.ac.uk/theory/seymour/ktclus/

  12. http://hepforge.cedar.ac.uk/ktjet/

  13. J.M. Butterworth, J.P. Couchman, B.E. Cox, B.M. Waugh, Comput. Phys. Commun. 153, 85 (2003). hep-ph/0210022

    ADS  Article  Google Scholar 

  14. A. Fabri et al., Softw. Pract. Exp. 30, 1167 (2000)

    MATH  Article  Google Scholar 

  15. J.-D. Boissonnat et al., Comput. Geom. 22, 5 (2001); http://www.cgal.org/

    MathSciNet  Article  Google Scholar 

  16. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph]

    ADS  Article  Google Scholar 

  17. A. Abdesselam, E.B. Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, P. Bruckman de Renstrom, D. Buarque Franzosi, R. Buckingham et al., Eur. Phys. J. C 71, 1661 (2011). arXiv:1012.5412 [hep-ph]

    ADS  Article  Google Scholar 

  18. P.A. Delsart, K. Geerlings, J. Huston, B. Martin, C. Vermilion, SpartyJet, http://projects.hepforge.org/spartyjet

  19. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 005 (2008). arXiv:0802.1188 [hep-ph]

    ADS  Article  Google Scholar 

  20. M. Cacciari, G.P. Salam, Phys. Lett. B 659, 119 (2008). arXiv:0707.1378 [hep-ph]

    ADS  Article  Google Scholar 

  21. M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, Eur. Phys. J. C 71, 1539 (2011). arXiv:1010.1759 [hep-ph]

    ADS  Google Scholar 

  22. C. Buttar et al., arXiv:0803.0678 [hep-ph]

  23. S.D. Ellis, C.K. Vermilion, J.R. Walsh, Phys. Rev. D 80, 051501 (2009). arXiv:0903.5081 [hep-ph]

    ADS  Article  Google Scholar 

  24. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). hep-ph/9707323

    ADS  Article  Google Scholar 

  25. M. Wobisch, T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic. arXiv:hep-ph/9907280

  26. M. Wobisch, Measurement and QCD analysis of jet cross sections in deep-inelastic, DESY-THESIS-2000-049

  27. S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, Phys. Lett. B 269, 432 (1991)

    ADS  Article  Google Scholar 

  28. L. Lonnblad, Z. Phys. C 58, 471–478 (1993)

    ADS  Article  Google Scholar 

  29. G.P. Salam, G. Soyez, J. High Energy Phys. 0705, 086 (2007). arXiv:0704.0292 [hep-ph]; standalone code available from http://projects.hepforge.org/siscone

    ADS  Article  Google Scholar 

  30. S.D. Ellis, J. Huston, M. Tonnesmann, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics, ed. by N. Graf, Snowmass (2001), p. P513. hep-ph/0111434

    Google Scholar 

  31. TeV4LHC QCD Working Group et al., hep-ph/0610012

  32. S. Weinzierl, Comput. Phys. Commun. 183, 813 (2012), arXiv:1108.1934 [hep-ph]

    ADS  Article  Google Scholar 

  33. The CDF code has been taken from http://www.pa.msu.edu/~huston/Les_Houches_2005/JetClu+Midpoint-StandAlone.tgz

  34. F. Abe et al. (CDF Collaboration), Phys. Rev. D 45, 1448 (1992)

    ADS  Article  Google Scholar 

  35. B. Abbott et al. (D0 Collaboration), FERMILAB-PUB-97-242-E

  36. V.M. Abazov et al. (D0 Collaboration), arXiv:1110.3771 [hep-ex]

  37. M.H. Seymour, C. Tevlin, J. High Energy Phys. 0611, 052 (2006). arXiv:hep-ph/0609100

    ADS  Article  Google Scholar 

  38. L.A. del Pozo, M.H. Seymour, unpublished

  39. T. Affolder et al. (CDF Collaboration), Phys. Rev. D 65, 092002 (2002)

    ADS  Article  Google Scholar 

  40. W. Bartel et al. (JADE Collaboration), Z. Phys. C 33, 23 (1986)

    ADS  Article  Google Scholar 

  41. S. Bethke et al. (JADE Collaboration), Phys. Lett. B 213, 235 (1988)

    ADS  Article  Google Scholar 

  42. G.P. Salam, G. Soyez, April 2009, unpublished

  43. S. Fortune, Algorithmica 2, 1 (1987)

    MathSciNet  Article  Google Scholar 

  44. M. Cacciari, G.P. Salam, S. Sapeta, J. High Energy Phys. 1004, 065 (2010). arXiv:0912.4926 [hep-ph]

    ADS  Article  Google Scholar 

  45. M. Cacciari, G.P. Salam, G. Soyez, Contribution in preparation to proceedings of “Workshop on TeV Colliders”, Les Houches, June 2011

  46. J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470 [hep-ph]

    ADS  Article  Google Scholar 

  47. D. Krohn, J. Thaler, L.T. Wang, J. High Energy Phys. 1002, 084 (2010). arXiv:0912.1342 [hep-ph]

    ADS  Article  Google Scholar 

  48. D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Phys. Rev. Lett. 101, 142001 (2008). arXiv:0806.0848 [hep-ph]

    ADS  Article  Google Scholar 

  49. J.M. Butterworth, J.R. Ellis, A.R. Raklev, G.P. Salam, Phys. Rev. Lett. 103, 241803 (2009). arXiv:0906.0728 [hep-ph]

    ADS  Article  Google Scholar 

  50. J.H. Kim, Phys. Rev. D 83, 011502 (2011). arXiv:1011.1493 [hep-ph]

    ADS  Article  Google Scholar 

  51. T.M. Chan, in Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2002), p. 472

    Google Scholar 

  52. M.R. Anderberg, Cluster Analysis for Applications. Probability and Mathematical Statistics vol. 19 (Academic Press, New York, 1973)

    MATH  Google Scholar 

  53. L. Sonnenschein, Ph.D. Thesis, RWTH Aachen 2001; http://cmsdoc.cern.ch/documents/01/doc2001_025.ps.Z

  54. T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175

    ADS  Article  Google Scholar 

  55. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820 [hep-ph]

    ADS  Article  Google Scholar 

  56. D. Eppstein, ACM J. Exp. Algorithmics 5, 1–23 (2000). arXiv:cs.DS/9912014

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Soyez.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Cacciari, M., Salam, G.P. & Soyez, G. FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). https://doi.org/10.1140/epjc/s10052-012-1896-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1896-2

Keywords

  • Ghost
  • Large Hadron Collider
  • Member Function
  • Cone Algorithm
  • Passive Area