Skip to main content

Automated one-loop calculations with GoSam

Abstract

We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop.

References

  1. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). doi:10.1016/S0010-4655(01)00290-9

    ADS  MATH  Article  Google Scholar 

  2. P. Nogueira, J. Comput. Phys. 105, 279 (1993). doi:10.1006/jcph.1993.1074

    MathSciNet  ADS  MATH  Article  Google Scholar 

  3. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). doi:10.1016/S0010-4655(98)00173-8

    ADS  Article  Google Scholar 

  4. G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko et al., Phys. Rep. 430, 117 (2006). doi:10.1016/j.physrep.2006.02.001

    ADS  Article  Google Scholar 

  5. A. Denner, S. Dittmaier, M. Roth, L. Wieders, Nucl. Phys. B 724, 247 (2005)

    ADS  Article  Google Scholar 

  6. C. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde et al., Phys. Rev. D 80, 074036 (2009). doi:10.1103/PhysRevD.80.074036

    ADS  Article  Google Scholar 

  7. C. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde et al., Phys. Rev. Lett. 102, 222001 (2009). doi:10.1103/PhysRevLett.102.222001

    ADS  Article  Google Scholar 

  8. R. Ellis, K. Melnikov, G. Zanderighi, Phys. Rev. D 80, 094002 (2009). doi:10.1103/PhysRevD.80.094002

    ADS  Article  Google Scholar 

  9. K. Melnikov, G. Zanderighi, Phys. Rev. D 81, 074025 (2010). doi:10.1103/PhysRevD.81.074025

    ADS  Article  Google Scholar 

  10. C. Berger, Z. Bern, L.J. Dixon, F. Cordero, D. Forde et al., Phys. Rev. D 82, 074002 (2010). doi:10.1103/PhysRevD.82.074002

    ADS  Article  Google Scholar 

  11. J.M. Campbell, R. Ellis, C. Williams, Phys. Rev. D 81, 074023 (2010). doi:10.1103/PhysRevD.81.074023

    ADS  Article  Google Scholar 

  12. A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, Phys. Rev. Lett. 103, 012002 (2009). doi:10.1103/PhysRevLett.103.012002

    ADS  Article  Google Scholar 

  13. A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, J. High Energy Phys. 1003, 021 (2010). doi:10.1007/JHEP03(2010)021

    ADS  Article  Google Scholar 

  14. G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau, M. Worek, J. High Energy Phys. 0909, 109 (2009). doi:10.1088/1126-6708/2009/09/109

    ADS  Article  Google Scholar 

  15. G. Bevilacqua, M. Czakon, C. Papadopoulos, M. Worek, Phys. Rev. Lett. 104, 162002 (2010). doi:10.1103/PhysRevLett.104.162002

    ADS  Article  Google Scholar 

  16. T. Binoth, N. Greiner, A. Guffanti, J. Reuter, J.P. Guillet et al., Phys. Lett. B 685, 293 (2010). doi:10.1016/j.physletb.2010.02.010

    ADS  Article  Google Scholar 

  17. N. Greiner, A. Guffanti, T. Reiter, J. Reuter, Phys. Rev. Lett. 107, 102002 (2011). doi:10.1103/PhysRevLett.107.102002

    ADS  Article  Google Scholar 

  18. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos, M. Worek, J. High Energy Phys. 1102, 083 (2011). doi:10.1007/JHEP02(2011)083

    ADS  Article  Google Scholar 

  19. A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini, Phys. Rev. Lett. 106, 052001 (2011). doi:10.1103/PhysRevLett.106.052001

    ADS  Article  Google Scholar 

  20. T. Melia, K. Melnikov, R. Rontsch, G. Zanderighi, J. High Energy Phys. 1012, 053 (2010). doi:10.1007/JHEP12(2010)053

    ADS  Article  Google Scholar 

  21. K. Melnikov, M. Schulze, Nucl. Phys. B 840, 129 (2010). doi:10.1016/j.nuclphysb.2010.07.003

    ADS  MATH  Article  Google Scholar 

  22. F. Campanario, C. Englert, M. Rauch, D. Zeppenfeld, Phys. Lett. B 704, 515 (2011). doi:10.1016/j.physletb.2011.09.072

    ADS  Article  Google Scholar 

  23. R. Frederix, S. Frixione, K. Melnikov, G. Zanderighi, J. High Energy Phys. 1011, 050 (2010). doi:10.1007/JHEP11(2010)050

    ADS  Article  Google Scholar 

  24. F. Cascioli, P. Maierhofer, S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012). doi:10.1103/PhysRevLett.108.111601

    ADS  Article  Google Scholar 

  25. C. Berger, Z. Bern, L.J. Dixon, F. Cordero, D. Forde et al., Phys. Rev. Lett. 106, 092001 (2011). doi:10.1103/PhysRevLett.106.092001

    ADS  Article  Google Scholar 

  26. H. Ita, Z. Bern, L. Dixon, F. Cordero, D. Kosower et al., Phys. Rev. D 85, 031501 (2012). doi:10.1103/PhysRevD.85.031501

    ADS  Article  Google Scholar 

  27. J.M. Campbell, R. Ellis, Phys. Rev. D 60, 113006 (1999). doi:10.1103/PhysRevD.60.113006

    ADS  Article  Google Scholar 

  28. J.M. Campbell, R. Ellis, C. Williams, J. High Energy Phys. 1107, 018 (2011). doi:10.1007/JHEP07(2011)018

    ADS  Article  Google Scholar 

  29. K. Arnold, M. Bahr, G. Bozzi, F. Campanario, C. Englert et al., Comput. Phys. Commun. 180, 1661 (2009). doi:10.1016/j.cpc.2009.03.006

    ADS  Article  Google Scholar 

  30. K. Arnold, J. Bellm, G. Bozzi, M. Brieg, F. Campanario et al. (2011). arXiv:1107.4038 [hep-ph]

  31. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002)

    ADS  Article  Google Scholar 

  32. S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber, C.D. White (2010). arXiv:1010.0819 [hep-ph]

  33. S. Frixione, P. Nason, C. Oleari, J. High Energy Phys. 0711, 070 (2007). doi:10.1088/1126-6708/2007/11/070

    ADS  Article  Google Scholar 

  34. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1006, 043 (2010). doi:10.1007/JHEP06(2010)043

    ADS  Article  Google Scholar 

  35. A. Kardos, C. Papadopoulos, Z. Trocsanyi, Phys. Lett. B 705, 76 (2011). doi:10.1016/j.physletb.2011.09.080

    ADS  Article  Google Scholar 

  36. M. Garzelli, A. Kardos, C. Papadopoulos, Z. Trocsanyi, Europhys. Lett. 96, 11001 (2011). doi:10.1209/0295-5075/96/11001

    ADS  Article  Google Scholar 

  37. A. Kardos, C. Papadopoulos, Z. Trocsanyi (2011). arXiv:1111.0610 [hep-ph]

  38. A. van Hameren, C. Papadopoulos, R. Pittau, J. High Energy Phys. 0909, 106 (2009). doi:10.1088/1126-6708/2009/09/106

    ADS  Article  Google Scholar 

  39. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni et al., J. High Energy Phys. 1105, 044 (2011). doi:10.1007/JHEP05(2011)044

    ADS  Article  Google Scholar 

  40. P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, J. High Energy Phys. 1008, 080 (2010). doi:10.1007/JHEP08(2010)080

    ADS  Article  Google Scholar 

  41. G. Cullen, N. Greiner, A. Guffanti, J.P. Guillet, G. Heinrich et al., Nucl. Phys. Proc. Suppl. 205–206, 67 (2010). doi:10.1016/j.nuclphysbps.2010.08.021

    Article  Google Scholar 

  42. G. Bevilacqua, M. Czakon, M. Garzelli, A. van Hameren, A. Kardos et al. (2011). arXiv:1110.1499 [hep-ph]

  43. L. Reina, T. Schutzmeier (2011). arXiv:1110.4438 [hep-ph]

  44. R. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi (2011). arXiv:1105.4319 [hep-ph]

  45. G. Ossola, C.G. Papadopoulos, R. Pittau, Nucl. Phys. B 763, 147 (2007). doi:10.1016/j.nuclphysb.2006.11.012

    MathSciNet  ADS  MATH  Article  Google Scholar 

  46. G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 07, 085 (2007). doi:10.1088/1126-6708/2007/07/085

    ADS  Article  Google Scholar 

  47. R. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov, Nucl. Phys. B 822, 270 (2009). doi:10.1016/j.nuclphysb.2009.07.023

    ADS  MATH  Article  Google Scholar 

  48. J. Vermaseren (2000). arXiv:math-ph/0010025

  49. G. Cullen, M. Koch-Janusz, T. Reiter, Comput. Phys. Commun. 182, 2368 (2011). doi:10.1016/j.cpc.2011.06.007

    ADS  Article  Google Scholar 

  50. T. Reiter, Comput. Phys. Commun. 181, 1301 (2010). doi:10.1016/j.cpc.2010.01.012

    MathSciNet  ADS  MATH  Article  Google Scholar 

  51. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, T. Reiter, Comput. Phys. Commun. 180, 2317 (2009). doi:10.1016/j.cpc.2009.06.024

    ADS  MATH  Article  Google Scholar 

  52. G. Cullen, J. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon et al., Comput. Phys. Commun. 182, 2276 (2011). doi:10.1016/j.cpc.2011.05.015

    MathSciNet  ADS  MATH  Article  Google Scholar 

  53. G. Heinrich, G. Ossola, T. Reiter, F. Tramontano, J. High Energy Phys. 1010, 105 (2010). doi:10.1007/JHEP10(2010)105

    ADS  Article  Google Scholar 

  54. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer et al., Comput. Phys. Commun. 183, 1201 (2012). doi:10.1016/j.cpc.2012.01.022

    ADS  Article  Google Scholar 

  55. A. Semenov (2010). arXiv:1005.1909 [hep-ph]

  56. T. Binoth, F. Boudjema, G. Dissertori, A. Lazopoulos, A. Denner et al., Comput. Phys. Commun. 181, 1612 (2010). doi:10.1016/j.cpc.2010.05.016. Dedicated to the memory of, and in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les Houches 2009

    ADS  MATH  Article  Google Scholar 

  57. G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0803, 042 (2008). doi:10.1088/1126-6708/2008/03/042

    MathSciNet  ADS  Article  Google Scholar 

  58. J. Fleischer, T. Riemann, Phys. Rev. D 83, 073004 (2011). doi:10.1103/PhysRevD.83.073004

    ADS  Article  Google Scholar 

  59. G. van Oldenborgh, J. Vermaseren, Z. Phys. C 46, 425 (1990). doi:10.1007/BF01621031

    MathSciNet  Article  Google Scholar 

  60. T. Ohl, Comput. Phys. Commun. 90, 340 (1995). doi:10.1016/0010-4655(95)90137-S

    ADS  Article  Google Scholar 

  61. J. Vermaseren, Comput. Phys. Commun. 83, 45 (1994). doi:10.1016/0010-4655(94)90034-5. Axodraw can be obtained from anonymous ftp from ftp.nikhef.nl. It is located in directory pub/form/axodraw. The author’s email address is: t68@nikhef.nl

    ADS  MATH  Article  Google Scholar 

  62. T. Reiter, Ph.D. thesis, 2009

  63. P. Nason, J. High Energy Phys. 0411, 040 (2004). doi:10.1088/1126-6708/2004/11/040

    ADS  Article  Google Scholar 

  64. Z. Xu, D.H. Zhang, L. Chang, Nucl. Phys. B 291, 392 (1987). doi:10.1016/0550-3213(87)90479-2

    ADS  Article  Google Scholar 

  65. W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011). doi:10.1140/epjc/s10052-011-1742-y

    ADS  Article  Google Scholar 

  66. G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0805, 004 (2008). doi:10.1088/1126-6708/2008/05/004

    MathSciNet  ADS  Article  Google Scholar 

  67. P. Draggiotis, M. Garzelli, C. Papadopoulos, R. Pittau, J. High Energy Phys. 0904, 072 (2009). doi:10.1088/1126-6708/2009/04/072

    MathSciNet  ADS  Article  Google Scholar 

  68. M. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1001, 040 (2010). doi:10.1007/JHEP01(2010)040

    ADS  Article  Google Scholar 

  69. M. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1101, 029 (2011). doi:10.1007/JHEP01(2011)029

    ADS  Article  Google Scholar 

  70. M. Garzelli, I. Malamos, Eur. Phys. J. C 71, 1605 (2011). doi:10.1140/epjc/s10052-011-1605-6

    ADS  Article  Google Scholar 

  71. P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 303, 607 (1988). doi:10.1016/0550-3213(88)90422-1

    ADS  Article  Google Scholar 

  72. B. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, Phys. Rev. D 66, 054024 (2002). doi:10.1103/PhysRevD.66.054024

    ADS  Article  Google Scholar 

  73. S. Weinzierl (1999). arXiv:hep-ph/9903380

  74. A. van Hameren, Comput. Phys. Commun. 182, 2427 (2011). doi:10.1016/j.cpc.2011.06.011

    ADS  Article  Google Scholar 

  75. R.K. Ellis, G. Zanderighi, J. High Energy Phys. 02, 002 (2008). doi:10.1088/1126-6708/2008/02/002

    ADS  Article  Google Scholar 

  76. G. Yost et al., Phys. Lett. B 204, 1 (1988). doi:10.1016/0370-2693(88)90505-9

    MathSciNet  ADS  Article  Google Scholar 

  77. C. Caso et al., Eur. Phys. J. C 3, 1 (1998). doi:10.1007/s10052-998-0104-x

    Article  Google Scholar 

  78. S. Catani, M. Seymour, Nucl. Phys. B 485, 291 (1997). doi:10.1016/S0550-3213(96)00589-5

    ADS  Article  Google Scholar 

  79. S. Catani, S. Dittmaier, Z. Trocsanyi, Phys. Lett. B 500, 149 (2001). doi:10.1016/S0370-2693(01)00065-X

    ADS  MATH  Article  Google Scholar 

  80. N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614 (2009). doi:10.1016/j.cpc.2009.02.018

    ADS  Article  Google Scholar 

  81. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann et al., J. High Energy Phys. 0902, 007 (2009). doi:10.1088/1126-6708/2009/02/007

    ADS  Article  Google Scholar 

  82. F. Krauss, R. Kuhn, G. Soff, J. High Energy Phys. 0202, 044 (2002).

    ADS  Article  Google Scholar 

  83. T. Gleisberg, F. Krauss, Eur. Phys. J. C 53, 501 (2008). doi:10.1140/epjc/s10052-007-0495-0

    ADS  Article  Google Scholar 

  84. M. Schonherr, F. Krauss, J. High Energy Phys. 0812, 018 (2008). doi:10.1088/1126-6708/2008/12/018

    ADS  Article  Google Scholar 

  85. S. Hoche, F. Krauss, M. Schonherr, F. Siegert, J. High Energy Phys. 1104, 024 (2011). doi:10.1007/JHEP04(2011)024

    ADS  Article  Google Scholar 

  86. S. Hoeche, F. Krauss, M. Schonherr, F. Siegert (2011)

  87. http://projects.hepforge.org/sherpa/, 2011

  88. J.H. Kuhn, A. Kulesza, S. Pozzorini, M. Schulze, Nucl. Phys. B 797, 27 (2008). doi:10.1016/j.nuclphysb.2007.12.029

    ADS  Article  Google Scholar 

  89. T. Gehrmann, N. Greiner, J. High Energy Phys. 12, 050 (2010). doi:10.1007/JHEP12(2010)050

    ADS  Article  Google Scholar 

  90. G. Gounaris, P. Porfyriadis, F. Renard, Eur. Phys. J. C 9, 673 (1999). doi:10.1007/s100529900079

    ADS  Google Scholar 

  91. W. Beenakker et al., Phys. Rev. Lett. 83, 3780 (1999). doi:10.1103/PhysRevLett.83.3780

    ADS  Article  Google Scholar 

  92. R. Frederix, T. Gehrmann, N. Greiner, J. High Energy Phys. 0809, 122 (2008). doi:10.1088/1126-6708/2008/09/122

    ADS  Article  Google Scholar 

  93. R. Frederix, T. Gehrmann, N. Greiner, J. High Energy Phys. 1006, 086 (2010). doi:10.1007/JHEP06(2010)086

    ADS  Article  Google Scholar 

  94. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet et al., J. High Energy Phys. 0709, 028 (2007). doi:10.1088/1126-6708/2007/09/028

    ADS  Article  Google Scholar 

  95. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5

    ADS  Article  Google Scholar 

  96. B. Feigl, H. Rzehak, D. Zeppenfeld (2011)

  97. S. Actis, P. Mastrolia, G. Ossola, Phys. Lett. B 682, 419 (2010). doi:10.1016/j.physletb.2009.11.035

    ADS  Article  Google Scholar 

  98. N. Greiner, A. Guffanti, J.P. Guillet, T. Reiter, J. Reuter, PoS DIS2010, 156 (2010)

  99. T. Binoth, G. Cullen, N. Greiner, A. Guffanti, J.P. Guillet et al., PoS RADCOR2009, 026 (2010)

  100. F. Febres Cordero, L. Reina, D. Wackeroth, Phys. Rev. D 74, 034007 (2006). doi:10.1103/PhysRevD.74.034007

    ADS  Article  Google Scholar 

  101. S. Badger, J.M. Campbell, R. Ellis, J. High Energy Phys. 1103, 027 (2011). doi:10.1007/JHEP03(2011)027

    ADS  Article  Google Scholar 

  102. R. Kleiss, W. Stirling, S. Ellis, Comput. Phys. Commun. 40, 359 (1986). doi:10.1016/0010-4655(86)90119-0

    ADS  Article  Google Scholar 

  103. R. Ellis, J. Sexton, Nucl. Phys. B 269, 445 (1986). doi:10.1016/0550-3213(86)90232-4

    ADS  Article  Google Scholar 

  104. T. Binoth, J. Guillet, G. Heinrich, J. High Energy Phys. 0702, 013 (2007). doi:10.1088/1126-6708/2007/02/013

    ADS  Article  Google Scholar 

  105. J. van der Bij, E. Glover, Nucl. Phys. B 313, 237 (1989). doi:10.1016/0550-3213(89)90317-9

    ADS  Article  Google Scholar 

  106. J.M. Campbell, R.K. Ellis, Phys. Rev. D 62, 114012 (2000). doi:10.1103/PhysRevD.62.114012

    ADS  Article  Google Scholar 

  107. J.M. Campbell, R. Ellis, F. Maltoni, S. Willenbrock, Phys. Rev. D 67, 095002 (2003). doi:10.1103/PhysRevD.67.095002

    ADS  Article  Google Scholar 

  108. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Phys. Lett. B 595, 432 (2004). doi:10.1016/j.physletb.2004.06.063

    ADS  Article  Google Scholar 

  109. R. Harlander, P. Kant, J. High Energy Phys. 0512, 015 (2005). doi:10.1088/1126-6708/2005/12/015

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Heinrich.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Cullen, G., Greiner, N., Heinrich, G. et al. Automated one-loop calculations with GoSam . Eur. Phys. J. C 72, 1889 (2012). https://doi.org/10.1140/epjc/s10052-012-1889-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1889-1

Keywords

  • Monte Carlo
  • High Energy Phys
  • Tree Level Amplitude
  • Phase Space Point
  • Kinematic Point