Skip to main content
Log in

Hawking radiation and tunneling mechanism for a new class of black holes in Einstein–Gauss–Bonnet gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study Hawking radiation in a new class of black hole solutions in Einstein–Gauss–Bonnet theory. The black hole has been argued to have vanishing mass and entropy, but finite Hawking temperature. To check if it really emits radiation, we analyze Hawking radiation using the original method of quantization of a scalar field in the black hole background and with the quantum tunneling method, and confirm that it emits radiation at the Hawking temperature. A general formula is derived for the Hawking temperature and backreaction in the tunneling approach. Physical implications of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)]

    Article  MathSciNet  ADS  Google Scholar 

  2. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000). arXiv:hep-th/9907001

    Article  MathSciNet  ADS  Google Scholar 

  3. S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005). arXiv:gr-qc/0502074

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006). arXiv:hep-th/0602146

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Maeda, N. Dadhich, Phys. Rev. D 74, 021501 (2006). arXiv:hep-th/0605031

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Maeda, N. Dadhich, Phys. Rev. D 75, 044007 (2007). arXiv:hep-th/0611188

    Article  ADS  Google Scholar 

  7. R.G. Cai, L.M. Cao, N. Ohta, Phys. Rev. D 81, 024018 (2010). arXiv:0911.0245 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  8. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2752 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999). arXiv:gr-qc/9812028

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Shankaranarayanan, T. Padmanabhan, K. Srinivasan, Class. Quantum Gravity 19, 2671 (2002). arXiv:gr-qc/0010042

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. E.C. Vagenas, Phys. Lett. B 559, 65 (2003). arXiv:hep-th/0209185

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. S. Shankaranarayanan, Phys. Rev. D 67, 084026 (2003). arXiv:gr-qc/0301090

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, J. High Energy Phys. 0505, 014 (2005). hep-th/0503081

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Arzano, A.J.M. Medved, E.C. Vagenas, J. High Energy Phys. 0509, 037 (2005). hep-th/0505266

    Article  MathSciNet  ADS  Google Scholar 

  15. A.J.M. Medved, E.C. Vagenas, Mod. Phys. Lett. A 20, 2449–2454 (2005). gr-qc/0504113

    Article  ADS  MATH  Google Scholar 

  16. Q.-Q. Jiang, S.-Q. Wu, Phys. Lett. B 635, 151–155 (2006). hep-th/0511123

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Kerner, R.B. Mann, Phys. Rev. D 73, 104010 (2006). arXiv:gr-qc/0603019

    Article  MathSciNet  ADS  Google Scholar 

  18. B.D. Chowdhury, Pramana 70, 593 (2008). arXiv:hep-th/0605197

    Article  Google Scholar 

  19. E.T. Akhmedov, V. Akhmedova, D. Singleton, Phys. Lett. B 642, 124 (2006). arXiv:hep-th/0608098

    Article  MathSciNet  ADS  Google Scholar 

  20. Y.P. Hu, J.Y. Zhang, Z. Zhao, Mod. Phys. Lett. A 21, 2143 (2006). arXiv:gr-qc/0611026

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. P. Mitra, Phys. Lett. B 648, 240 (2007). arXiv:hep-th/0611265

    Article  MathSciNet  ADS  Google Scholar 

  22. X.N. Wu, S. Gao, Phys. Rev. D 75, 044027 (2007). arXiv:gr-qc/0702033

    Article  ADS  Google Scholar 

  23. C.Z. Liu, J.Y. Zhu, Gen. Relativ. Gravit. 40, 1899 (2008). arXiv:gr-qc/0703055

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. T. Pilling, Phys. Lett. B 660, 402 (2008). arXiv:0709.1624 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  25. S.P. Kim, J. High Energy Phys. 0711, 048 (2007). arXiv:0710.0915 [hep-th]

    Article  ADS  Google Scholar 

  26. S. Sarkar, D. Kothawala, Phys. Lett. B 659, 683 (2008). arXiv:0709.4448 [gr-qc]

    MathSciNet  ADS  Google Scholar 

  27. R. Li, J.R. Ren, Phys. Lett. B 661, 370 (2008). arXiv:0802.3954 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  28. D.Y. Chen, Q.Q. Jiang, S.Z. Yang, X.T. Zu, Class. Quantum Gravity 25, 205022 (2008). arXiv:0803.3248 [hep-th]

    Article  ADS  Google Scholar 

  29. R. Banerjee, B.R. Majhi, J. High Energy Phys. 0806, 095 (2008). arXiv:0805.2220 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Banerjee, B.R. Majhi, Phys. Lett. B 675, 243 (2009). arXiv:0903.0250 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. E.T. Akhmedov, T. Pilling, D. Singleton, Int. J. Mod. Phys. D 17, 2453 (2008). arXiv:0805.2653 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. B. Zhang, Q.Y. Cai, M.S. Zhan, Phys. Lett. B 665, 260 (2008). arXiv:0806.2015 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  33. S.K. Modak, Phys. Lett. B 671, 167 (2009). arXiv:0807.0959 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  34. K. Umetsu, Int. J. Mod. Phys. A 25, 4123 (2010). arXiv:0907.1420 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. K. Umetsu, Phys. Lett. B 692, 61 (2010). arXiv:1007.1823 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010). arXiv:0907.4271 [hep-th]

    Article  ADS  Google Scholar 

  37. S.H. Mehdipour, Phys. Rev. D 81, 124049 (2010). arXiv:1006.5215 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Yale, Phys. Lett. B 697, 398 (2011). arXiv:1012.3165 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  39. K. Matsuno, K. Umetsu, Phys. Rev. D 83, 064016 (2011). arXiv:1101.2091 [hep-th]

    Article  ADS  Google Scholar 

  40. L. Vanzo, G. Acquaviva, R. Di Criscienzo, Class. Quantum Gravity 28, 183001 (2011). arXiv:1106.4153 [gr-qc]

    Article  ADS  Google Scholar 

  41. R.M. Wald, Phys. Rev. D 48, 3427 (1993). gr-qc/9307038

    Article  MathSciNet  ADS  Google Scholar 

  42. R.-G. Cai, Y. Liu, Y.-W. Sun, J. High Energy Phys. 0910, 080 (2009). arXiv:0909.2807 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  43. H. Liu, H. Lu, M. Luo, arXiv:1104.2623 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Ohta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muneyuki, K., Ohta, N. Hawking radiation and tunneling mechanism for a new class of black holes in Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 72, 1858 (2012). https://doi.org/10.1140/epjc/s10052-012-1858-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1858-8

Keywords

Navigation