Skip to main content
Log in

Reconstructing seesaws

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We explore some aspects of “reconstructing” the heavy singlet sector of supersymmetric type I seesaw models, for two, three or four singlets. We work in the limit where one light neutrino is massless. In an ideal world, where selected coefficients of the TeV-scale effective Lagrangian could be measured with arbitrary accuracy, the two-singlet case can be reconstructed, two three or more singlets can be differentiated, and an inverse seesaw with four singlets can be reconstructed. In a more realistic world, we estimate α β γ expectations with a “Minimal-Flavour-Violation-like” ansatz, which gives a relation between ratios of the three branching ratios. The two-singlet model predicts a discrete set of ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Minkowski, mu → e gamma at a rate of one out of 1-billion muon decays? Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  2. M. Gell-Mann, P. Ramond, R. Slansky, in Proceedings of the Supergravity Stony Brook Workshop, ed. by P. Van Nieuwenhuizen, D. Freedman, New York (North-Holland, Amsterdam, 1979)

    Google Scholar 

  3. T. Yanagida, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, ed. by A. Sawada, A. Sugamoto, Tsukuba, Japan (1979) (KEK Report No. 79-18, Tsukuba)

    Google Scholar 

  4. R. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  5. T. Asaka, S. Blanchet, M. Shaposhnikov, The nuMSM, dark matter and neutrino masses. Phys. Lett. B 631, 151–156 (2005). hep-ph/0503065

    Article  ADS  Google Scholar 

  6. A. de Gouvea, J. Jenkins, N. Vasudevan, Neutrino phenomenology of very low-energy seesaws. Phys. Rev. D 75, 013003 (2007). arXiv:hep-ph/0608147 [hep-ph]

    Article  ADS  Google Scholar 

  7. A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni, Minimal models with light sterile neutrinos. J. High Energy Phys. 1107, 105 (2011). arXiv:1106.0064 [hep-ph]

    Article  ADS  Google Scholar 

  8. S. Davidson, A. Ibarra, Determining seesaw parameters from weak scale measurements? J. High Energy Phys. 0109, 013 (2001). hep-ph/0104076

    Article  ADS  Google Scholar 

  9. S. Davidson, From weak scale observables to leptogenesis. J. High Energy Phys. 0303, 037 (2003). hep-ph/0302075

    Article  ADS  Google Scholar 

  10. A. Ibarra, Reconstructing the two right-handed neutrino model. J. High Energy Phys. 0601, 064 (2006). hep-ph/0511136

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Ibarra, G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos. Phys. Lett. B 591, 285–296 (2004). hep-ph/0312138

    Article  ADS  Google Scholar 

  12. C. Cheung, L.J. Hall, D. Pinner, Seesaw spectroscopy at colliders. arXiv:1103.3520 [hep-ph]

  13. J.A. Casas, A. Ibarra, F. Jimenez-Alburquerque, Hints on the high-energy seesaw mechanism from the low-energy neutrino spectrum. J. High Energy Phys. 0704, 064 (2007). hep-ph/0612289

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Ibarra, E. Molinaro, S.T. Petcov, Low energy signatures of the TeV scale see-saw mechanism. arXiv:1103.6217 [hep-ph]

  15. S. Davidson, J. Garayoa, F. Palorini, N. Rius, CP violation in the SUSY seesaw: leptogenesis and low energy. J. High Energy Phys. 0809, 053 (2008). arXiv:0806.2832 [hep-ph]

    Article  ADS  Google Scholar 

  16. D. Wyler, L. Wolfenstein, Massless neutrinos in left-right symmetric models. Nucl. Phys. B 218, 205 (1983)

    Article  ADS  Google Scholar 

  17. R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett. 56, 561 (1986)

    Article  ADS  Google Scholar 

  18. M.C. Gonzalez-Garcia, J.W.F. Valle, Fast decaying neutrinos and observable flavor violation in a new class of Majoron models. Phys. Lett. B 216, 360 (1989)

    Article  ADS  Google Scholar 

  19. C.S. Aulakh, A. Melfo, A. Rasin, G. Senjanovic, Seesaw and supersymmetry or exact R-parity. Phys. Lett. B 459, 557–562 (1999). hep-ph/9902409

    Article  ADS  Google Scholar 

  20. R. Hempfling, Neutrino masses and mixing angles in SUSY GUT theories with explicit R-parity breaking. Nucl. Phys. B 478, 3–30 (1996). hep-ph/9511288

    Article  ADS  Google Scholar 

  21. E.J. Chun, S.K. Kang, One loop corrected neutrino masses and mixing in supersymmetric standard model without R-parity. Phys. Rev. D 61, 075012 (2000). hep-ph/9909429

    Article  ADS  Google Scholar 

  22. M. Hirsch, M.A. Diaz, W. Porod, J.C. Romao, J.W.F. Valle, Neutrino masses and mixings from supersymmetry with bilinear R parity violation: a theory for solar and atmospheric neutrino oscillations. Phys. Rev. D 62, 113008 (2000). hep-ph/0004115

    Article  ADS  Google Scholar 

  23. S. Davidson, M. Losada, Neutrino masses in the R(p) violating MSSM. J. High Energy Phys. 0005, 021 (2000). hep-ph/0005080

    Article  ADS  Google Scholar 

  24. S. Davidson, M. Losada, Basis independent neutrino masses in the R(p) violating MSSM. Phys. Rev. D 65, 075025 (2002). hep-ph/0010325

    Article  ADS  Google Scholar 

  25. G.C. Branco, L. Lavoura, M.N. Rebelo, Majorana neutrinos and Cp violation in the leptonic sector. Phys. Lett. B 180, 264 (1986)

    Article  ADS  Google Scholar 

  26. A. Santamaria, Masses, mixings, Yukawa couplings and their symmetries. Phys. Lett. B 305, 90–97 (1993). hep-ph/9302301

    Article  ADS  Google Scholar 

  27. M. Raidal, A. van der Schaaf, I. Bigi, M.L. Mangano, Y.K. Semertzidis, S. Abel, S. Albino, S. Antusch et al., Flavour physics of leptons and dipole moments. Eur. Phys. J. C 57, 13–182 (2008). arXiv:0801.1826 [hep-ph]

    Article  ADS  Google Scholar 

  28. K. Nakamura et al. (Particle Data Group), The review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  29. T2K Collaboration, Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. arXiv:1106.2822

  30. A. De Gouvea, G.F. Giudice, A. Strumia, K. Tobe, Phenomenological implications of neutrinos in extra dimensions. Nucl. Phys. B 623, 395–420 (2002). hep-ph/0107156

    Article  ADS  Google Scholar 

  31. A. Broncano, M.B. Gavela, E.E. Jenkins, The effective Lagrangian for the seesaw model of neutrino mass and leptogenesis. Phys. Lett. B 552, 177–184 (2003). hep-ph/0210271

    Article  ADS  Google Scholar 

  32. S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon, Unitarity of the leptonic mixing matrix. J. High Energy Phys. 0610, 084 (2006). hep-ph/0607020

    Article  ADS  Google Scholar 

  33. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal flavour violation: an effective field theory approach. Nucl. Phys. B 645, 155–187 (2002). hep-ph/0207036

    Article  ADS  Google Scholar 

  34. J. Adam et al. (MEG Collaboration), New limit on the lepton-flavour violating decay μ +e + γ. arXiv:1107.5547 [hep-ex]

  35. B. Aubert et al. (BABAR Collaboration), Searches for lepton flavor violation in the decays τ ±e ± γ and tau ±μ ± γ. Phys. Rev. Lett. 104, 021802 (2010). arXiv:0908.2381 [hep-ex].

    Article  ADS  Google Scholar 

  36. K. Hayasaka et al. (Belle Collaboration), New search for tau—mu gamma and tau—e gamma decays at Belle. Phys. Lett. B 666, 16 (2008). arXiv:0705.0650 [hep-ex]

    Article  ADS  Google Scholar 

  37. The SuperB Physics Programme. Parallel flavour talk thursday morning at the EPS Conference on HEP 2011 at Grenoble, http://eps-hep2011.eu/

  38. M. Raidal, A. Strumia, Predictions of the most minimal seesaw model. Phys. Lett. B 553, 72–78 (2003). hep-ph/0210021

    Article  ADS  Google Scholar 

  39. W.-L. Guo, Z.-z. Xing, S. Zhou, Neutrino masses, lepton flavor mixing and leptogenesis in the minimal seesaw model. Int. J. Mod. Phys. E 16, 1–50 (2007). hep-ph/0612033

    Article  ADS  Google Scholar 

  40. S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rep. 466, 105–177 (2008). arXiv:0802.2962 [hep-ph]

    Article  ADS  Google Scholar 

  41. L. Covi, M. Olechowski, S. Pokorski, K. Turzynski, J.D. Wells, Supersymmetric mass spectra for gravitino dark matter with a high reheating temperature. J. High Energy Phys. 1101, 033 (2011). arXiv:1009.3801 [hep-ph]

    Article  ADS  Google Scholar 

  42. H. Baer, S. Kraml, A. Lessa, S. Sekmen, Reconciling thermal leptogenesis with the gravitino problem in SUSY models with mixed axion/axino dark matter. J. Cosmol. Astropart. Phys. 1011, 040 (2010). arXiv:1009.2959 [hep-ph]

    Article  ADS  Google Scholar 

  43. M. Fujii, T. Yanagida, Natural gravitino dark matter and thermal leptogenesis in gauge mediated supersymmetry breaking models. Phys. Lett. B 549, 273–283 (2002). hep-ph/0208191

    Article  ADS  Google Scholar 

  44. Y. Grossman, H.E. Haber, Sneutrino mixing phenomena. Phys. Rev. Lett. 78, 3438–3441 (1997). hep-ph/9702421

    Article  ADS  Google Scholar 

  45. S. Davidson, M. Losada, N. Rius, Neutral Higgs sector of the MSSM without R(p). Nucl. Phys. B 587, 118–146 (2000). hep-ph/9911317

    Article  ADS  Google Scholar 

  46. W. Abdallah, A. Awad, S. Khalil, H. Okada, Muon anomalous magnetic moment and mu → e gamma in B-L model with inverse seesaw. arXiv:1105.1047 [hep-ph]

  47. D.V. Forero, S. Morisi, M. Tortola, J.W.F. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw. arXiv:1107.6009 [hep-ph]

  48. M. Malinsky, T. Ohlsson, Z.-z. Xing, H. Zhang, Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model. Phys. Lett. B 679, 242–248 (2009). arXiv:0905.2889 [hep-ph]

    Article  ADS  Google Scholar 

  49. C. Simonetto, A. Ibarra, Minimal rates for lepton flavour violation from supersymmetric leptogenesis. J. Phys. Conf. Ser. 259, 012077 (2010)

    Article  ADS  Google Scholar 

  50. F. Borzumati, A. Masiero, Large muon and electron number violations in supergravity theories. Phys. Rev. Lett. 57, 961 (1986)

    Article  ADS  Google Scholar 

  51. Y. Kuno, Y. Okada, Muon decay and physics beyond the standard model. Rev. Mod. Phys. 73, 151–202 (2001). hep-ph/9909265

    Article  ADS  Google Scholar 

  52. Z. Lalak, S. Pokorski, G.G. Ross, Beyond MFV in family symmetry theories of fermion masses. J. High Energy Phys. 1008, 129 (2010). arXiv:1006.2375 [hep-ph]

    Article  ADS  Google Scholar 

  53. I. Masina, Lepton electric dipole moments from heavy states Yukawa couplings. Nucl. Phys. B 671, 432–458 (2003). hep-ph/0304299

    Article  ADS  Google Scholar 

  54. Y. Farzan, M.E. Peskin, The contribution from neutrino Yukawa couplings to lepton electric dipole moments. Phys. Rev. D 70, 095001 (2004). hep-ph/0405214

    Article  ADS  Google Scholar 

  55. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, T. Yanagida, Lepton flavor violation in the supersymmetric standard model with seesaw induced neutrino masses. Phys. Lett. B 357, 579–587 (1995). hep-ph/9501407

    Article  ADS  Google Scholar 

  56. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model. Phys. Rev. D 53, 2442–2459 (1996). hep-ph/9510309

    Article  ADS  Google Scholar 

  57. G.W. Bennett et al. (Muon G-2 Collaboration), Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). hep-ex/0602035

    Article  ADS  Google Scholar 

  58. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic contributions to the muon g-2 and to alpha(MZ). Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180 [hep-ph]

    Article  ADS  Google Scholar 

  59. M. Graesser, S.D. Thomas, Supersymmetric relations among electromagnetic dipole operators. Phys. Rev. D 65, 075012 (2002). hep-ph/0104254

    Article  ADS  MathSciNet  Google Scholar 

  60. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. Phys. Rev. D 53, 6565 (1996) [Erratum-ibid. D 56, 4424 (1997)]. arXiv:hep-ph/9512396

    ADS  Google Scholar 

  61. J. Hisano, K. Tobe, Neutrino masses, muon g-2, and lepton-flavour violation in the supersymmetric see-saw model. Phys. Lett. B 510, 197 (2001). arXiv:hep-ph/0102315

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacha Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, S., Elmer, M. Reconstructing seesaws. Eur. Phys. J. C 71, 1804 (2011). https://doi.org/10.1140/epjc/s10052-011-1804-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1804-1

Keywords

Navigation