Skip to main content
Log in

The flavor of quantum gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We develop an effective field theory to describe the coupling of non-thermal quantum black holes to particles such as those of the Standard Model. The effective Lagrangian is determined by imposing that the production cross section of a non-thermal quantum black hole be given by the usual geometrical cross section. Having determined the effective Lagrangian, we estimate the contribution of a virtual hole to the anomalous magnetic moment of the muon, μ transition and to the electric dipole moment of the neutron. We obtain surprisingly weak bounds on the Planck mass due to a chiral suppression factor in the calculated low energy observables. The tightest bounds come from μ and the limit on the neutron electric dipole moment. These bounds are in the few TeV region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263–272 (1998). hep-ph/9803315

    Article  ADS  Google Scholar 

  2. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos et al., Phys. Lett. B 436, 257–263 (1998). hep-ph/9804398

    Article  ADS  Google Scholar 

  3. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370–3373 (1999). hep-ph/9905221

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. X. Calmet, S.D.H. Hsu, D. Reeb, Phys. Rev. D 77, 125015 (2008). arXiv:0803.1836 [hep-th]

    Article  ADS  Google Scholar 

  5. X. Calmet, Mod. Phys. Lett. A 25, 1553 (2010). arXiv:1005.1805 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  6. P. Meade, L. Randall, J. High Energy Phys. 0805, 003 (2008). arXiv:0708.3017 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  7. X. Calmet, W. Gong, S.D.H. Hsu, Phys. Lett. B 668, 20–23 (2008). arXiv:0806.4605 [hep-ph]

    Article  ADS  Google Scholar 

  8. G. Aad et al. (ATLAS Collaboration), arXiv:1103.3864 [hep-ex]

  9. V.A. Kostelecky, S. Samuel, Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  10. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  11. X. Calmet, H. Fritzsch, D. Holtmannspotter, Phys. Rev. D 64, 037701 (2001). arXiv:hep-ph/0103012

    Article  ADS  Google Scholar 

  12. X. Calmet, Radiative lepton decays and the substructure of leptons. Published in Budapest 2001, High energy physics hep2001/157. arXiv:hep-ph/0108079

  13. X. Calmet, M. Feliciangeli, Phys. Rev. D 78, 067702 (2008). arXiv:0806.4304 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Calmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmet, X., Fragkakis, D. & Gausmann, N. The flavor of quantum gravity. Eur. Phys. J. C 71, 1781 (2011). https://doi.org/10.1140/epjc/s10052-011-1781-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1781-4

Keywords

Navigation