Skip to main content
Log in

Constraints on unified models for dark matter and dark energy using H(z)

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The differential age data of astrophysical objects that have evolved passively during the history of the universe (e.g. red galaxies) allows us to test theoretical cosmological models through the predicted Hubble function expressed in terms of the redshift z, H(z). We use the observational data for H(z) to test unified scenarios for dark matter and dark energy. Specifically, we focus our analysis on the Generalized Chaplygin Gas (GCG) and the viscous fluid (VF) models. For the GCG model, it is shown that the unified scenario for dark energy and dark matter requires some priors. For the VF model we obtain estimations for the free parameters, which may be compared with further analysis mainly at perturbative level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Li, X.-D. Li, S. Wang, Y. Wang, Dark energy, arXiv:1103.5870

  2. R.R. Caldwell, M. Kamionkowski, Annu. Rev. Nucl. Part. Sci. 59, 397 (2009)

    Article  ADS  Google Scholar 

  3. G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)

    Article  ADS  Google Scholar 

  4. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. Martin, Mod. Phys. Lett. A 23, 1252 (2008)

    Article  ADS  Google Scholar 

  6. A.Y. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  7. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  8. N. Bilic, G.B. Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2002)

    Article  ADS  MATH  Google Scholar 

  9. J.C. Fabris, S.V.B. Gonçalves, P.E. de Souza, Gen. Relativ. Gravit. 34, 53 (2002)

    Article  MATH  Google Scholar 

  10. Y. Wu, S. Li, J. Lu, X. Yang, Mod. Phys. Lett. A 22, 783 (2007)

    Article  ADS  Google Scholar 

  11. R.C. Freitas, S.V.B. Gonçalves, H.E.S. Velten, Phys. Lett. B 703, 209 (2011)

    Article  ADS  Google Scholar 

  12. C. Armendáriz-Picón, T. Damour, V. Mukhanov, Phys. Lett. B 458, 209 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A.R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007)

    Article  ADS  Google Scholar 

  14. J.C. Fabris, T.C.C. Guio, M.H. Daouda, O.F. Piattella, Scalar models for the generalized Chaplygin gas and the structure formation constraints. Gravit. Cosmol. 17, 259 (2011)

    Article  ADS  Google Scholar 

  15. D. Bertacca, N. Bartolo, J. Cosmol. Astropart. Phys. 0711, 026 (2007)

    Article  ADS  Google Scholar 

  16. W. Zimdahl, Phys. Rev. D 53, 5483 (1996)

    Article  ADS  Google Scholar 

  17. R. Maartens, Causal thermodynamics in relativity, in Proceedings of the Hanno Rund Conference on Relativity and Thermodynamics, pp. 10–44. University of Natal, Durban, ed. by S.D. Maharaj (1997). astro-ph/9609119

    Google Scholar 

  18. R. Colistete Jr., J.C. Fabris, J. Tossa, W. Zimdahl, Phys. Rev. D 76, 103516 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.C. Fabris, S.V.B. Goncalves, R. de Sa Ribeiro, Gen. Relativ. Gravit. 38, 495–506 (2006)

    Article  ADS  MATH  Google Scholar 

  20. W.S. Hipólito-Ricaldi, H.E.S. Velten, W. Zimdahl, J. Cosmol. Astropart. Phys. 0906, 016 (2009)

    Article  ADS  Google Scholar 

  21. B. Li, J.D. Barrow, Phys. Rev. D 79, 103521 (2009)

    Article  ADS  Google Scholar 

  22. W.S. Hipólito-Ricaldi, H.E.S. Velten, W. Zimdahl, Phys. Rev. D 82, 063507 (2010)

    Article  ADS  Google Scholar 

  23. M. Szydlowski, O. Hrycyna, Ann. Phys. 322, 2745 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J.C. Fabris, S.V.B. Gonçalves, H.E.S. Velten, W. Zimdahl, Phys. Rev. D 78, 103523 (2008)

    Article  ADS  Google Scholar 

  25. J.C. Fabris, H.E.S. Velten, W. Zimdahl, Phys. Rev. D 81, 087303 (2010)

    Article  ADS  Google Scholar 

  26. E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, arXiv:1001.4538

  27. R. Jackiw, A particle field theorist’s lectures on supersymmetric, non abelian fluid mechanics and d-branes, physics/0010042

  28. R. Jimenez, A. Loeb, Astrophys. J. 573, 37 (2002)

    Article  ADS  Google Scholar 

  29. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  30. D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S.A. Stanford, J. Cosmol. Astropart. Phys. 2, 8 (2010)

    Article  ADS  Google Scholar 

  31. R. Jimenez, L. Verde, T. Treu, D. Stern, Astrophys. J. 593, 622 (2003)

    Article  ADS  Google Scholar 

  32. T.-J. Zhang, C. Ma, T. Lan, Adv. Astron. 2010, 184284 (2010)

    Article  Google Scholar 

  33. C. Ma, T.-J. Zhang, Astrophys. J. 730, 74 (2011)

    Article  ADS  Google Scholar 

  34. O. Piattella, J. Cosmol. Astropart. Phys. 1003, 012 (2010)

    Article  ADS  Google Scholar 

  35. R. Colistete Jr., J.C. Fabris, S.V.B. Gonçalves, P.E. de Souza, Int. J. Mod. Phys. D 13, 669 (2004)

    Article  ADS  Google Scholar 

  36. R. Colistete Jr., J.C. Fabris, S.V.B. Gonçalves, Int. J. Mod. Phys. D 14, 775 (2005)

    Article  ADS  Google Scholar 

  37. R. Colistete Jr., J.C. Fabris, Class. Quantum Gravity 22, 2813 (2005)

    Article  ADS  MATH  Google Scholar 

  38. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  39. L. Amendola, F. Finelli, C. Burigana, D. Carturan, J. Cosmol. Astropart. Phys. 0307, 005 (2003)

    Article  ADS  Google Scholar 

  40. H. Velten, D.J. Schwarz, J. Cosmol. Astropart. Phys. 1109, 016 (2011)

    Article  ADS  Google Scholar 

  41. M.C. Bento, O. Bertolami, A.A. Sen, Gen. Relativ. Gravit. 35, 2063 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Lett. B 575, 172 (2003)

    Article  ADS  Google Scholar 

  43. I. Muller, Z. Phys. Hadrons Nucl. 198(4), 329 (1967)

    Google Scholar 

  44. W. Israel, Ann. Phys. 100, 310 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  45. W. Israel, J. Stewart, Ann. Phys. 118, 341 (1979)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermano Velten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabris, J.C., de Oliveira, P.L.C. & Velten, H. Constraints on unified models for dark matter and dark energy using H(z). Eur. Phys. J. C 71, 1773 (2011). https://doi.org/10.1140/epjc/s10052-011-1773-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1773-4

Keywords

Navigation