Skip to main content
Log in

Complex Langevin: etiology and diagnostics of its main problem

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The complex Langevin method is a leading candidate for solving the so-called sign problem occurring in various physical situations. Its most vexing problem is that sometimes it produces ‘convergence to the wrong limit’. In this paper we carefully revisit the formal justification of the method, identifying points at which it may fail and derive a necessary and sufficient criterion for correctness. This criterion is, however, not practical, since its application requires checking an infinite tower of identities. We propose instead a practical test involving only a check of the first few of those identities; this raises the question of the ‘sensitivity’ of the test. This sensitivity as well as the general insights into the possible reasons of failure (the etiology) are then tested in two toy models where the correct answer is known. At least in those models the test works perfectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. de Forcrand, Proc. Sci. LAT2009, 010 (2009). 1005.0539 [hep-lat]

    Google Scholar 

  2. J. Klauder, Acta Phys. Austriaca Suppl. XXXV, 251 (1983)

    Google Scholar 

  3. J. Klauder, J. Phys. A, Math. Gen. 16, L317–L319 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Klauder, Phys. Rev. A 29, 2036–2047 (1984)

    Article  ADS  Google Scholar 

  5. G. Parisi, Phys. Lett. B 131, 393 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  6. F. Karsch, H.W. Wyld, Phys. Rev. Lett. 55, 2242 (1985)

    Article  ADS  Google Scholar 

  7. P.H. Damgaard, H. Hüffel, Phys. Rep. 152, 227 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Berges, I.-O. Stamatescu, Phys. Rev. Lett. 95, 202003 (2005). hep-lat/0508030

    Article  ADS  Google Scholar 

  9. J. Berges, S. Borsanyi, D. Sexty, I.O. Stamatescu, Phys. Rev. D 75, 045007 (2007). hep-lat/0609058

    Article  ADS  Google Scholar 

  10. J. Berges, D. Sexty, Nucl. Phys. B 799, 306 (2008). 0708.0779 [hep-lat]

    Article  ADS  MATH  Google Scholar 

  11. G. Aarts, I.-O. Stamatescu, J. High Energy Phys. 0809, 018 (2008). 0807.1597 [hep-lat]

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Aarts, Phys. Rev. Lett. 102, 131601 (2009). 0810.2089 [hep-lat]

    Article  ADS  Google Scholar 

  13. G. Aarts, J. High Energy Phys. 0905, 052 (2009). 0902.4686 [hep-lat]

    Article  ADS  Google Scholar 

  14. G. Aarts, F.A. James, E. Seiler, I.O. Stamatescu, Phys. Lett. B 687, 154 (2010). 0912.0617 [hep-lat]

    Article  ADS  Google Scholar 

  15. G. Aarts, F.A. James, J. High Energy Phys. 1008, 020 (2010). 1005.3468 [hep-lat]

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Aarts, K. Splittorff, J. High Energy Phys. 1008, 017 (2010). 1006.0332 [hep-lat]

    Article  ADS  Google Scholar 

  17. J. Ambjorn, S.K. Yang, Phys. Lett. B 165, 140 (1985)

    Article  ADS  Google Scholar 

  18. J.R. Klauder, W.P. Petersen, J. Stat. Phys. 39, 53 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. H.Q. Lin, J.E. Hirsch, Phys. Rev. B 34, 1964 (1986)

    Article  ADS  Google Scholar 

  20. J. Ambjorn, M. Flensburg, C. Peterson, Nucl. Phys. B 275, 375 (1986)

    Article  ADS  Google Scholar 

  21. G. Aarts, E. Seiler, I.O. Stamatescu, Phys. Rev. D 81, 054508 (2010). 0912.3360 [hep-lat]

    Article  ADS  Google Scholar 

  22. G. Guralnik, C. Pehlevan, Nucl. Phys. B 822, 349 (2009). 0902.1503 [hep-lat]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M. Reed, B. Simon, Functional Analysis, vol. I. (Academic Press, New York, 1972)

    MATH  Google Scholar 

  24. E. Seiler, Untersuchung eines selbstgekoppelten relativistischen Skalarfeldes mit Funktionalmethoden. Doctoral thesis, Technische Universität München (1971, unpublished) (in German)

  25. C. Pehlevan, G. Guralnik, Nucl. Phys. B 811, 519 (2009). 0710.3756 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E.B. Davies, Linear Operators and their Spectra (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  27. W.H. Press et al., Numerical Recipes in Fortran 77—The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992). Ch. 19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Aarts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, G., James, F.A., Seiler, E. et al. Complex Langevin: etiology and diagnostics of its main problem. Eur. Phys. J. C 71, 1756 (2011). https://doi.org/10.1140/epjc/s10052-011-1756-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1756-5

Keywords

Navigation