Skip to main content

Advertisement

Log in

Seeking evolution of dark energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study how observationally to distinguish between a cosmological constant (CC) and an evolving dark energy with equation of state ω(Z). We focus on the value of redshift Z at which the cosmic late time acceleration begins and \(\ddot{a}(Z^{*}) = 0\). Four ω(Z) are studied, including the well-known CPL model and a new model that has advantages when describing the entire expansion era, ∞>Z>−1, such that the future 0>Z>−1 is also sensibly described. If dark energy is represented by a CC model with ω≡−1, the present ranges for Ω Λ (t 0) and Ω m (t 0) imply that Z =0.743 with 4% error. We discuss the possible implications of a model-independent measurement of Z with better accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Perlmutter et al. (The Supernova Cosmology Project), Astrophys. J. 517, 565 (1999). astro-ph/9812133

    Article  ADS  Google Scholar 

  2. A.G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998). astro-ph/9805201

    Article  ADS  Google Scholar 

  3. A. Friedmann, Z. Phys. 10, 377 (1922)

    ADS  Google Scholar 

  4. G. Lemaître, Ann. Soc. Sci. Brux. 47A, 49 (1927)

    Google Scholar 

  5. H.P. Robertson, Astrophys. J. 82, 284 (1935)

    Article  ADS  MATH  Google Scholar 

  6. H.P. Robertson, Astrophys. J. 83, 187 (1936)

    Article  ADS  MATH  Google Scholar 

  7. H.P. Robertson, Astrophys. J. 83, 257 (1936)

    Article  ADS  MATH  Google Scholar 

  8. A.G. Walker, Proc. Lond. Math. Soc. 42, 90 (1937)

    Article  Google Scholar 

  9. C.L. Bennett et al. (WMAP7 Collaboration), Astrophys. J. Suppl. 192, 17 (2011). arXiv:1001.4758 [astro-ph.CO]

    Article  ADS  Google Scholar 

  10. F.-Y. Wang, Z.-G. Gao, Chin. J. Astron. Astrophys. 6, 561 (2006). arXiv:0708.4062 [astro-ph]

    Article  ADS  Google Scholar 

  11. M. Chevallier, D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001). gr-qc/0009008v2

    Article  ADS  Google Scholar 

  12. E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003). astro-ph/0208512v1

    Article  ADS  Google Scholar 

  13. A. Shafieloo, V. Sahni, A.A. Starobinsky, Phys. Rev. D 80, 101301(R) (2009). arXiv:0903.5141v4 [astro-ph.CO]

    Article  ADS  Google Scholar 

  14. J.-M. Virey et al., Phys. Rev. D 70, 121301 (2004). astro-ph/0407452

    Article  ADS  Google Scholar 

  15. R.A. Daly, S.G. Diorovski, Astrophys. J. 597, 9 (2003). arXiv:astro-ph/0305197

    Article  ADS  Google Scholar 

  16. P.J. Steinhardt, D. Wesley, Phys. Rev. D 79, 101026 (2009). arXiv:0811.1614 [hep-th]

    Article  Google Scholar 

  17. P.H. Frampton, K.J. Ludwick, R.J. Scherrer, arXiv:1106.4996 [astro-ph.CO]

  18. P.H. Frampton, K.J. Ludwick, S. Nojiri, S.D. Odintsov, R.J. Scherrer, arXiv:1108.0067 [hep-th]

  19. P.H. Frampton, Mod. Phys. Lett. A 19, 801 (2004). hep-th/0301007

    Article  MathSciNet  ADS  Google Scholar 

  20. C.M. Will, Was Einstein Right? Putting General Relativity to the Test (Basic Books, New York, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Frampton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frampton, P.H., Ludwick, K.J. Seeking evolution of dark energy. Eur. Phys. J. C 71, 1735 (2011). https://doi.org/10.1140/epjc/s10052-011-1735-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1735-x

Keywords

Navigation