Skip to main content
Log in

Drell–Yan production at small q T , transverse parton distributions and the collinear anomaly

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Using methods from effective field theory, an exact all-order expression for the Drell–Yan cross section at small transverse momentum is derived directly in q T space, in which all large logarithms are resummed. The anomalous dimensions and matching coefficients necessary for resummation at NNLL order are given explicitly. The precise relation between our result and the Collins–Soper–Sterman formula is discussed, and as a by-product the previously unknown three-loop coefficient A (3) is obtained. The naive factorization of the cross section at small transverse momentum is broken by a collinear anomaly, which prevents a process-independent definition of x T -dependent parton distribution functions. A factorization theorem is derived for the product of two such functions, in which the dependence on the hard momentum transfer is separated out. The remainder factors into a product of two functions of longitudinal momentum variables and \(x_{T}^{2}\), whose renormalization-group evolution is derived and solved in closed form. The matching of these functions at small x T onto standard parton distributions is calculated at \(\mathcal{O}(\alpha_{s})\), while their anomalous dimensions are known to three loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.L. Dokshitzer, D.I. Dyakonov, S.I. Troyan, Phys. Rep. 58, 269 (1980)

    Article  ADS  Google Scholar 

  2. G. Parisi, R. Petronzio, Nucl. Phys. B 154, 427 (1979)

    Article  ADS  Google Scholar 

  3. G. Curci, M. Greco, Y. Srivastava, Nucl. Phys. B 159, 451 (1979)

    Article  ADS  Google Scholar 

  4. J.C. Collins, D.E. Soper, G.F. Sterman, Nucl. Phys. B 250, 199 (1985)

    Article  ADS  Google Scholar 

  5. C.T.H. Davies, W.J. Stirling, Nucl. Phys. B 244, 337 (1984)

    Article  ADS  Google Scholar 

  6. C.T.H. Davies, B.R. Webber, W.J. Stirling, Nucl. Phys. B 256, 413 (1985)

    Article  ADS  Google Scholar 

  7. D. de Florian, M. Grazzini, Nucl. Phys. B 616, 247 (2001). arXiv:hep-ph/0108273

    Article  ADS  Google Scholar 

  8. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 151801 (2007). arXiv:0707.0085 [hep-ex]

    Article  ADS  Google Scholar 

  9. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77, 112001 (2008). arXiv:0708.3642 [hep-ex]

    Article  ADS  Google Scholar 

  10. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 141801 (2009). arXiv:0908.0766 [hep-ex]

    Article  ADS  Google Scholar 

  11. C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart, Phys. Rev. D 63, 114020 (2001). hep-ph/0011336

    Article  ADS  Google Scholar 

  12. C.W. Bauer, D. Pirjol, I.W. Stewart, Phys. Rev. D 65, 054022 (2002). hep-ph/0109045

    Article  ADS  Google Scholar 

  13. M. Beneke, A.P. Chapovsky, M. Diehl, T. Feldmann, Nucl. Phys. B 643, 431 (2002). hep-ph/0206152

    Article  ADS  MATH  Google Scholar 

  14. J.C. Collins, Acta Phys. Pol. B 34, 3103 (2003). arXiv:hep-ph/0304122

    ADS  Google Scholar 

  15. J.y. Chiu, F. Golf, R. Kelley, A.V. Manohar, Phys. Rev. Lett. 100, 021802 (2008). arXiv:0709.2377 [hep-ph]

    Article  ADS  Google Scholar 

  16. J.y. Chiu, F. Golf, R. Kelley, A.V. Manohar, Phys. Rev. D 77, 053004 (2008). arXiv:0712.0396 [hep-ph]

    Article  ADS  Google Scholar 

  17. I.W. Stewart, F.J. Tackmann, W.J. Waalewijn, Phys. Rev. D 81, 094035 (2010). arXiv:0910.0467 [hep-ph]

    Article  ADS  Google Scholar 

  18. I.W. Stewart, F.J. Tackmann, W.J. Waalewijn, J. High Energy Phys. 1009, 005 (2010). arXiv:1002.2213 [hep-ph]

    Article  ADS  Google Scholar 

  19. V.A. Smirnov, Phys. Lett. B 309, 397 (1993)

    Article  ADS  Google Scholar 

  20. V.A. Smirnov, Springer Tracts Mod. Phys. 177, 1 (2002)

    Article  ADS  Google Scholar 

  21. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Phys. Lett. B 564, 65 (2003). arXiv:hep-ph/0302104

    Article  ADS  Google Scholar 

  22. C. Balazs, E.L. Berger, P.M. Nadolsky, C.P. Yuan, Phys. Rev. D 76, 013009 (2007). arXiv:0704.0001 [hep-ph]

    Article  ADS  Google Scholar 

  23. Y. Gao, C.S. Li, J.J. Liu, Phys. Rev. D 72, 114020 (2005). arXiv:hep-ph/0501229

    Article  ADS  Google Scholar 

  24. A. Idilbi, X.d. Ji, F. Yuan Phys. Lett. B 625, 253 (2005). arXiv:hep-ph/0507196

    Article  ADS  Google Scholar 

  25. S. Mantry, F. Petriello, Phys. Rev. D 81, 093007 (2010). arXiv:0911.4135 [hep-ph]

    Article  ADS  Google Scholar 

  26. T. Becher, M. Neubert, Phys. Rev. Lett. 97, 082001 (2006). arXiv:hep-ph/0605050

    Article  ADS  Google Scholar 

  27. G. Sterman, Nucl. Phys. B 281, 310 (1987)

    Article  ADS  Google Scholar 

  28. S. Catani, L. Trentadue, Nucl. Phys. B 327, 323 (1989)

    Article  ADS  Google Scholar 

  29. T. Becher, M. Neubert, G. Xu, J. High Energy Phys. 0807, 030 (2008). arXiv:0710.0680 [hep-ph]

    Article  ADS  Google Scholar 

  30. A.V. Manohar, Phys. Rev. D 68, 114019 (2003). arXiv:hep-ph/0309176

    Article  ADS  Google Scholar 

  31. T. Becher, M. Neubert, B.D. Pecjak, J. High Energy Phys. 0701, 076 (2007). arXiv:hep-ph/0607228

    Article  ADS  Google Scholar 

  32. M. Beneke, T. Feldmann, Phys. Lett. B 553, 267 (2003). hep-ph/0211358

    Article  ADS  MATH  Google Scholar 

  33. A.V. Efremov, A.V. Radyushkin, Theor. Math. Phys. 44, 774 (1981), Teor. Mat. Fiz. 44, 327 (1980)

    Article  Google Scholar 

  34. J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981), Nucl. Phys. B 213, 545 (1983), Erratum

    Article  ADS  Google Scholar 

  35. J.C. Collins, D.E. Soper, Nucl. Phys. B 194, 445 (1982)

    Article  ADS  Google Scholar 

  36. T. Becher, M. Neubert, Phys. Rev. Lett. 102, 162001 (2009). arXiv:0901.0722 [hep-ph]

    Article  ADS  Google Scholar 

  37. T. Becher, M. Neubert, J. High Energy Phys. 0906, 081 (2009). arXiv:0903.1126 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Becher, R.J. Hill, M. Neubert, Phys. Rev. D 69, 054017 (2004). arXiv:hep-ph/0308122

    Article  ADS  Google Scholar 

  39. M. Beneke, T. Feldmann, Nucl. Phys. B 685, 249 (2004). arXiv:hep-ph/0311335

    Article  ADS  Google Scholar 

  40. B.O. Lange, M. Neubert, Nucl. Phys. B 690, 249 (2004). arXiv:hep-ph/0311345. Nucl. Phys. B 723, 201 (2005), Erratum

    Article  ADS  MATH  Google Scholar 

  41. J.G.M. Gatheral, Phys. Lett. B 133, 90 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Frenkel, J.C. Taylor, Nucl. Phys. B 246, 231 (1984)

    Article  ADS  Google Scholar 

  43. I.O. Cherednikov, N.G. Stefanis, arXiv:0911.1031 [hep-ph]

  44. T. Becher, M. Neubert, D. Wilhelm, in preparation

  45. J.C. Collins, Adv. Ser. Dir. High Energy Phys. 5, 573 (1989). arXiv:hep-ph/0312336

    Google Scholar 

  46. J.C. Collins, F. Hautmann, Phys. Lett. B 472, 129 (2000). arXiv:hep-ph/9908467

    Article  ADS  Google Scholar 

  47. J.C. Collins, F. Hautmann, J. High Energy Phys. 0103, 016 (2001). arXiv:hep-ph/0009286

    Article  ADS  Google Scholar 

  48. X.d. Ji, J.p. Ma, F. Yuan, Phys. Rev. D 71, 034005 (2005) arXiv:hep-ph/0404183

    Article  ADS  Google Scholar 

  49. J. Collins, PoS LC2008, 028 (2008). arXiv:0808.2665 [hep-ph]

  50. J.C. Collins, A. Metz, Phys. Rev. Lett. 93, 252001 (2004). arXiv:hep-ph/0408249

    Article  ADS  Google Scholar 

  51. V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Phys. Rev. D 79, 033013 (2009). arXiv:0808.3008 [hep-ph]

    Article  ADS  Google Scholar 

  52. V. Ahrens, T. Becher, M. Neubert, L.L. Yang, Eur. Phys. J. C 62, 333 (2009). arXiv:0809.4283 [hep-ph]

    Article  ADS  Google Scholar 

  53. L. Magnea, G.F. Sterman, Phys. Rev. D 42, 4222 (1990)

    Article  ADS  Google Scholar 

  54. M. Neubert, Eur. Phys. J. C 40, 165 (2005). arXiv:hep-ph/0408179

    Article  ADS  Google Scholar 

  55. S. Frixione, P. Nason, G. Ridolfi, Nucl. Phys. B 542, 311 (1999). arXiv:hep-ph/9809367

    Article  ADS  Google Scholar 

  56. M. Beneke, Phys. Rep. 317, 1 (1999). arXiv:hep-ph/9807443

    Article  ADS  Google Scholar 

  57. J.C. Collins, D.E. Soper, Nucl. Phys. B 197, 446 (1982)

    Article  ADS  Google Scholar 

  58. M. Beneke, V.M. Braun, Nucl. Phys. B 454, 253 (1995). arXiv:hep-ph/9506452

    Article  ADS  Google Scholar 

  59. R.K. Ellis, S. Veseli, Nucl. Phys. B 511, 649 (1998). arXiv:hep-ph/9706526

    Article  ADS  Google Scholar 

  60. S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004). arXiv:hep-ph/0403192

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Neubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, T., Neubert, M. Drell–Yan production at small q T , transverse parton distributions and the collinear anomaly. Eur. Phys. J. C 71, 1665 (2011). https://doi.org/10.1140/epjc/s10052-011-1665-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1665-7

Keywords

Navigation