Skip to main content
Log in

Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study spinor field theories as an origin to induce space-time evolution. Self-interacting spinor fields with canonical and non-canonical kinetic terms are considered in a Friedman–Robertson–Walker universe. The deceleration parameter is calculated by solving the equation of motion and the Friedman equation, simultaneously. It is shown that the spinor fields can accelerate and decelerate the universe expansion. To construct realistic models we discuss the contributions from the dynamical symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Brill, J.A. Wheeler, Rev. Mod. Phys. 29, 465 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. M. Henneaux, Phys. Rev. D 21, 857 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Armendariz-Picon, P.B. Greene, Gen. Relativ. Gravit. 35, 1637 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M.O. Ribas, F.P. Devecchi, G.M. Kremer, Phys. Rev. D 72, 123502 (2005). arXiv:gr-qc/0511099

    Article  ADS  Google Scholar 

  5. T. Watanabe, arXiv:0902.1392 [astro-ph.CO]

  6. Y.F. Cai, J. Wang, Class. Quantum Gravity 25, 165014 (2008). arXiv:0806.3890 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Wang, S.w. Cui, S.p. Yang, Phys. Lett. B 683, 101 (2010). arXiv:0901.1439 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  8. B. Saha, G.N. Shikin, J. Math. Phys. 38, 5305 (1997). arXiv:gr-qc/9609055

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. B. Saha, Mod. Phys. Lett. A 16, 1287 (2001). arXiv:gr-qc/0009002

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. B. Saha, Phys. Rev. D 74, 124030 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. B. Saha, Phys. Rev. D 69, 124006 (2004). arXiv:gr-qc/0308088

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Saha, Gravit. Cosmol. 16, 160 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y.Q. Gu, Int. J. Mod. Phys. A 22, 4667 (2007). arXiv:gr-qc/0610147

    Article  ADS  MATH  Google Scholar 

  14. C.G. Boehmer, D.F. Mota, Phys. Lett. B 663, 168 (2008). arXiv:0710.2003 [astro-ph]

    Article  ADS  Google Scholar 

  15. C.G. Boehmer, Phys. Rev. D 77, 123535 (2008). arXiv:0804.0616 [astro-ph]

    Article  ADS  Google Scholar 

  16. D. Gredat, S. Shankaranarayanan, J. Cosmol. Astropart. Phys. 1001, 008 (2010). arXiv:0807.3336 [astro-ph]

    Article  ADS  Google Scholar 

  17. C.G. Boehmer, J. Burnett, Phys. Rev. D 78, 104001 (2008). arXiv:0809.0469 [gr-qc]

    Article  ADS  Google Scholar 

  18. S. Shankaranarayanan, Int. J. Mod. Phys. D 18, 2173 (2009). arXiv:0905.2573 [astro-ph.CO]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. C.G. Boehmer, J. Burnett, Mod. Phys. Lett. A 25, 101 (2010). arXiv:0906.1351 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  20. H. Wei, arXiv:1002.4230 [gr-qc]

  21. C.G. Boehmer, J. Burnett, D.F. Mota, D.J. Shaw, J. High Energy Phys. 1007, 053 (2010). arXiv:1003.3858 [hep-th]

    Article  ADS  Google Scholar 

  22. D.J. Liu, Phys. Rev. D 82, 063523 (2010). arXiv:1005.5508 [astro-ph.CO]

    Article  ADS  Google Scholar 

  23. L.L. Samojeden, F.P. Devecchi, G.M. Kremer, Phys. Rev. D 81, 027301 (2010). arXiv:1001.2285 [gr-qc]

    Article  ADS  Google Scholar 

  24. L.P. Chimento, F.P. Devecchi, M.I. Forte, G.M. Kremer, Class. Quantum Gravity 25, 085007 (2008). arXiv:0707.4455 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  25. M.O. Ribas, F.P. Devecchi, G.M. Kremer, Europhys. Lett. 81, 19001 (2008). arXiv:0710.5155 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  26. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, Phys. Lett. B 458, 209 (1999). arXiv:hep-th/9904075

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. J. Garriga, V.F. Mukhanov, Phys. Lett. B 458, 219 (1999). arXiv:hep-th/9904176

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000). arXiv:astro-ph/9912463

    Article  ADS  Google Scholar 

  29. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000). arXiv:astro-ph/0004134

    Article  ADS  Google Scholar 

  30. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. D 63, 103510 (2001). arXiv:astro-ph/0006373

    Article  ADS  Google Scholar 

  31. R. Myrzakulov, arXiv:1011.4337 [astro-ph.CO]

  32. P. Tsyba, K. Yerzhanov, K. Esmakhanova, I. Kulnazarov, G. Nugmanova, R. Myrzakulov, arXiv:1103.5918 [gr-qc]

  33. K.K. Yerzhanov, P.Y. Tsyba, S.R. Myrzakul, I.I. Kulnazarov, R. Myrzakulov, arXiv:1012.3031 [astro-ph.CO]

  34. R. Rakhi, G.V. Vijayagovindan, K. Indulekha, Int. J. Mod. Phys. A 25, 2735 (2010). arXiv:0912.1222 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. R. Rakhi, G.V. Vijayagovindan, N.P. Abraham, K. Indulekha, Int. J. Mod. Phys. A 25, 1267 (2010). arXiv:0910.3761 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  36. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  37. D.J. Gross, A. Neveu, Phys. Rev. D 10, 3235 (1974)

    Article  ADS  Google Scholar 

  38. T. Inagaki, S. Mukaigawa, T. Muta, Phys. Rev. D 52, 4267 (1995). arXiv:hep-th/9505058

    Article  ADS  Google Scholar 

  39. J. Hashida, S. Mukaigawa, T. Muta, K. Ohkura, K. Yamamoto, Phys. Rev. D 61, 044015 (2000). arXiv:gr-qc/9907014

    Article  ADS  Google Scholar 

  40. T. Inagaki, T. Muta, S.D. Odintsov, Prog. Theor. Phys. Suppl. 127, 93 (1997). arXiv:hep-th/9711084

    Article  ADS  Google Scholar 

  41. M. Hayashi, T. Inagaki, H. Takata, Int. J. Mod. Phys. A 24, 5363 (2009)

    Article  ADS  MATH  Google Scholar 

  42. T. Inagaki, M. Hayashi, in Strong Coupling Gauge Theories in LHC Era, ed. by H. Fukaya, M. Harada, M. Tanabashi, K. Yamawaki (World Scientific, Singapore, 2011). arXiv:1003.1173 [hep-ph]

    Google Scholar 

  43. M. Hayashi, T. Inagaki, Int. J. Mod. Phys. A 25, 3353 (2010). arXiv:1003.3163 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  44. T. Inagaki, S. Nojiri, S.D. Odintsov, J. Cosmol. Astropart. Phys. 0506, 010 (2005). arXiv:gr-qc/0504054

    Article  ADS  Google Scholar 

  45. T. Inagaki, J. Phys. A 39, 6455 (2006). arXiv:gr-qc/0602083

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Nojiri, S.D. Odintsov, arXiv:1011.0544 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Inagaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagaki, T., Rybalov, Y. & Meng, X. Space-time evolution induced by spinor fields with canonical and non-canonical kinetic terms. Eur. Phys. J. C 71, 1656 (2011). https://doi.org/10.1140/epjc/s10052-011-1656-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1656-8

Keywords

Navigation