Properties of the top quark

Review

Abstract

The top quark was discovered at the CDF and D0 experiments in 1995. As the partner of the bottom quark its properties within the Standard Model are fully defined. Only the mass is a free parameter. The measurement of the top quark mass and the verification of the expected properties have been an important topic of experimental top quark physics since. In this review the recent results on top quark properties obtained by the Tevatron experiments CDF and D0 are summarised. At the advent of the LHC special emphasis is given to the basic measurement methods and the dominating systematic uncertainties.

References

  1. 1.
    S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579 (1961) CrossRefGoogle Scholar
  2. 2.
    J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965 (1962) ADSMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264 (1967) ADSCrossRefGoogle Scholar
  4. 4.
    H. Fritzsch, M. Gell-Mann, H. Leutwyler, Advantages of the color octet gluon picture. Phys. Lett. B 47, 365 (1973) ADSCrossRefGoogle Scholar
  5. 5.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964) ADSGoogle Scholar
  6. 6.
    K. Nakamura et al. (Particle Data Group), Review of particle physics. J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    P. de Bernardis et al. (Boomerang), A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000). arXiv:astro-ph/0004404 ADSCrossRefGoogle Scholar
  8. 8.
    D.N. Spergel et al. (WMAP), First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003). arXiv:astro-ph/0302209 ADSCrossRefGoogle Scholar
  9. 9.
    P. Astier et al. (SNLS), The supernova legacy survey: Measurement of Ω M, Ω Λ and w from the first year data set. Astron. Astrophys. 447, 31–48 (2006). arXiv:astro-ph/0510447 ADSCrossRefGoogle Scholar
  10. 10.
    D.N. Spergel et al. (WMAP), Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377 (2007). arXiv:astro-ph/0603449 ADSCrossRefGoogle Scholar
  11. 11.
    F. Abe et al. (CDF), Observation of top quark production in \(\bar{p}p\) collisions. Phys. Rev. Lett. 74, 2626–2631 (1995). arXiv:hep-ex/9503002 ADSCrossRefGoogle Scholar
  12. 12.
    S. Abachi et al. (D0), Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995). hep-ex/9503003 ADSCrossRefGoogle Scholar
  13. 13.
    R.S. Chivukula, B.A. Dobrescu, H. Georgi, C.T. Hill, Top quark seesaw theory of electroweak symmetry breaking. Phys. Rev. D 59, 075003 (1999). arXiv:hep-ph/9809470 ADSCrossRefGoogle Scholar
  14. 14.
    B.A. Dobrescu, C.T. Hill, Electroweak symmetry breaking via top condensation seesaw. Phys. Rev. Lett. 81, 2634–2637 (1998). arXiv:hep-ph/9712319 ADSCrossRefGoogle Scholar
  15. 15.
    A. Quadt, Top quark physics at hadron colliders. Eur. Phys. J. C 48, 835–1000 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    M. Beneke et al., Top quark physics. arXiv:hep-ph/0003033
  17. 17.
    W. Wagner, Top quark physics in hadron collisions. Rep. Prog. Phys. 68, 2409–2494 (2005). arXiv:hep-ph/0507207 ADSCrossRefGoogle Scholar
  18. 18.
    R. Kehoe, M. Narain, A. Kumar, Review of top quark physics results. Int. J. Mod. Phys. A 23, 353–470 (2008). arXiv:0712.2733 ADSCrossRefGoogle Scholar
  19. 19.
    R. Demina, E.J. Thomson, Top quark properties and interactions. Annu. Rev. Nucl. Part. Sci. 58, 125–146 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    M.-A. Pleier, Review of top quark properties measurements at the tevatron. Int. J. Mod. Phys. A 24, 2899–3037 (2009). arXiv:0810.5226 ADSCrossRefGoogle Scholar
  21. 21.
    W. Bernreuther, Top quark physics at the LHC. J. Phys. G 35, 083001 (2008). arXiv:0805.1333 ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Incandela, A. Quadt, W. Wagner, D. Wicke, Status and prospects of top-quark physics. Prog. Part. Nucl. Phys. 63, 239–292 (2009). arXiv:0904.2499 ADSCrossRefGoogle Scholar
  23. 23.
    F. Deliot, D. Glenzinski, Top quark physics at the tevatron. arXiv:1010.1202. Submitted to Rev. Mod. Phys.
  24. 24.
    CDF, A. Heinson (D0), Observation of single top quark production at the Tevatron collider. Mod. Phys. Lett. A 25, 309–339 (2010). arXiv:1002.4167 ADSCrossRefGoogle Scholar
  25. 25.
    Y. Fukuda et al. (Super-Kamiokande), Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). arXiv:hep-ex/9807003 ADSCrossRefGoogle Scholar
  26. 26.
    Q.R. Ahmad et al. (SNO), Measurement of the rate of ν e+dp+p+e interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301 (2001). arXiv:nucl-ex/0106015 ADSCrossRefGoogle Scholar
  27. 27.
    Q.R. Ahmad et al. (SNO), Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002). arXiv:nucl-ex/0204008 ADSCrossRefGoogle Scholar
  28. 28.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963) ADSCrossRefGoogle Scholar
  29. 29.
    M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973) ADSCrossRefGoogle Scholar
  30. 30.
    N. Kidonakis, R. Vogt, Next-to-next-to-leading order soft-gluon corrections in top quark hadroproduction. Phys. Rev. D 68, 114014 (2003). hep-ph/0308222 ADSCrossRefGoogle Scholar
  31. 31.
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, The \(t\bar{t}\) cross-section at 1.8 TeV and 1.96 TeV: A study of the systematics due to parton densities and scale dependence. J. High Energy Phys. 04, 068 (2004). hep-ph/0303085 ADSCrossRefGoogle Scholar
  32. 32.
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC. J. High Energy Phys. 09, 127 (2008). arXiv:0804.2800 ADSCrossRefGoogle Scholar
  33. 33.
    S. Moch, P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders. Phys. Rev. D 78, 034003 (2008). arXiv:0804.1476 ADSCrossRefGoogle Scholar
  34. 34.
    S. Moch, P. Uwer, Heavy-quark pair production at two loops in QCD. Nucl. Phys. B, Proc. Suppl. 183, 75–80 (2008). arXiv:0807.2794 ADSCrossRefGoogle Scholar
  35. 35.
    N. Kidonakis, R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC. Phys. Rev. D 78, 074005 (2008). arXiv:0805.3844 ADSCrossRefGoogle Scholar
  36. 36.
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 07, 012 (2002). arXiv:hep-ph/0201195 ADSCrossRefGoogle Scholar
  37. 37.
    B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, The fully differential single top quark cross-section in next to leading order QCD. Phys. Rev. D 66, 054024 (2002). arXiv:hep-ph/0207055 ADSCrossRefGoogle Scholar
  38. 38.
    Z. Sullivan, Understanding single-top-quark production and jets at hadron colliders. Phys. Rev. D 70, 114012 (2004). arXiv:hep-ph/0408049 ADSCrossRefGoogle Scholar
  39. 39.
    N. Kidonakis, Single top production at the Tevatron: Threshold resummation and finite-order soft gluon corrections. Phys. Rev. D 74, 114012 (2006). arXiv:hep-ph/0609287 ADSCrossRefGoogle Scholar
  40. 40.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Physical gluons and high E T jets. Phys. Lett. B 604, 61–68 (2004). arXiv:hep-ph/0410230 ADSCrossRefGoogle Scholar
  41. 41.
    J.H. Kühn, Acta Phys. Pol. 12, 347 (1981) Google Scholar
  42. 42.
  43. 43.
  44. 44.
  45. 45.
    V. Rusu, Tevatron operation and physics. FNAL Physics Advisory Commitee, http://www.fnal.gov/directorate/program_planning/Mar2009PACPublic/PACMarch09AgendaPublic.htm, March, 2009
  46. 46.
    F. Abe et al. (CDF), The CDF detector: an overview. Nucl. Instrum. Methods A 271, 387–403 (1988) ADSCrossRefGoogle Scholar
  47. 47.
    R. Blair et al. (CDF-II), The CDF-II detector: Technical design report. FERMILAB-PUB-96-390-E, 1996 Google Scholar
  48. 48.
    D.E. Acosta et al. (CDF), Measurement of the J/ψ meson and b-hadron production cross sections in \(p\bar{p}\) collisions at \(\sqrt{s} = 1960\) GeV. Phys. Rev. D 71, 032001 (2005). arXiv:hep-ex/0412071 ADSCrossRefGoogle Scholar
  49. 49.
    A. Sill (CDF), CDF Run II silicon tracking projects. Nucl. Instrum. Methods A 447, 1–8 (2000) ADSCrossRefGoogle Scholar
  50. 50.
    A. Bardi et al., The CDF online silicon vertex tracker. Nucl. Instrum. Methods A 485, 178–182 (2002) ADSCrossRefGoogle Scholar
  51. 51.
    A.A. Affolder et al. (CDF), Intermediate silicon layers detector for the CDF experiment. Nucl. Instrum. Methods A 453, 84–88 (2000) ADSCrossRefGoogle Scholar
  52. 52.
    D. Acosta et al. (CDF-II), A time-of-flight detector in CDF-II. Nucl. Instrum. Methods A 518, 605–608 (2004) ADSCrossRefGoogle Scholar
  53. 53.
    S. Abachi et al. (D0), The D0 detector. Nucl. Instrum. Methods A 338, 185–253 (1994) ADSCrossRefGoogle Scholar
  54. 54.
    V.M. Abazov et al. (D0), The upgraded D0 detector. Nucl. Instrum. Methods A 565, 463–537 (2006). arXiv:physics/0507191 ADSCrossRefGoogle Scholar
  55. 55.
  56. 56.
    V.M. Abazov et al. (D0), Measurement of the \(t \bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s}= 1.96\ \mbox{TeV}\) using kinematic characteristics of lepton + jets events. Phys. Rev. D 76, 092007 (2007). arXiv:0705.2788 ADSCrossRefGoogle Scholar
  57. 57.
    A. Abulencia et al. (CDF), Measurement of the \(t \bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\) using lepton + jets events with jet probability b tagging. Phys. Rev. D 74, 072006 (2006). arXiv:hep-ex/0607035 ADSCrossRefGoogle Scholar
  58. 58.
    G. Blazey et al., in QCD and weak boson physics in Run II, ed. by U. Baur, R.K. Ellis, D. Zeppenfeld (2000), FERMILAB-PUB-00-297 Google Scholar
  59. 59.
    D.E. Acosta et al. (CDF), Measurement of the \(t\bar{t}\) production cross section in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV using lepton plus jets events with semileptonic B decays to muons. Phys. Rev. D 72, 032002 (2005). arXiv:hep-ex/0506001 ADSCrossRefGoogle Scholar
  60. 60.
    T. Scanlon, b-tagging and the search for neutral supersymmetric Higgs bosons at D0. FERMILAB-THESIS-2006-43 Google Scholar
  61. 61.
    E. Laenen, Top quark in theory. arXiv:0809.3158, 2008
  62. 62.
    S. Fleming, A.H. Hoang, S. Mantry, I.W. Stewart, Factorization approach for top mass reconstruction at high energies. arXiv:0710.4205, 2007
  63. 63.
    A.H. Hoang, I.W. Stewart, Top mass measurements from jets and the Tevatron top-quark mass. Nucl. Phys. B, Proc. Suppl. 185, 220–226 (2008). arXiv:0808.0222 ADSCrossRefGoogle Scholar
  64. 64.
    DELPHI, Mass effects in the Pythia generator. DELPHI 2003-061. PHYS 932, June, 2003 Google Scholar
  65. 65.
    T. Aaltonen et al. (CDF), First simultaneous measurement of the top quark mass in the lepton + jets and dilepton channels at CDF. Phys. Rev. D 79, 092005 (2009). arXiv:0809.4808 ADSCrossRefGoogle Scholar
  66. 66.
    CDF, Combined template-based top quark mass measurement in the lepton + jets and dileptons channels using 2.7 fb−1 of data. CDF Note 9578, Oct., 2008 Google Scholar
  67. 67.
    CDF, Simultaneous template-based top quark mass measurement in the lepton + jets and dileptons channels including m T2. CDF Note 9679. http://www-cdf.fnal.gov/physics/new/top/2009/mass/TMT_p19_public/, Mar., 2009
  68. 68.
    CDF, Combined template-based top quark mass measurement in the lepton + jets and dileptons channels using 5.6 fb−1 of data. CDF Note 10273, Aug., 2010 Google Scholar
  69. 69.
    A.A. Affolder et al. (CDF), Measurement of the \(t\bar{t}\) production cross section in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 64, 032002 (2001). arXiv:hep-ex/0101036. Phys. Rev. D 65, 039902 (2002), Erratum ADSCrossRefGoogle Scholar
  70. 70.
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 07, 001 (2003). arXiv:hep-ph/0206293 ADSCrossRefGoogle Scholar
  71. 71.
    T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175 ADSCrossRefGoogle Scholar
  72. 72.
    M. Sandhoff, P. Skands, Colour annealing: A toy model of colour reconnections. FERMILAB-CONF-05-518-T, in Les Houches ‘Physics at TeV Colliders’ (2005) SM and Higgs Working Group: Summary report, hep-ph/0604120, 2005
  73. 73.
    P. Skands, D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron. Eur. Phys. J. C 52, 133–140 (2007). hep-ph/0703081 ADSCrossRefGoogle Scholar
  74. 74.
    D. Wicke, P.Z. Skands, Non-perturbative QCD effects and the top mass at the Tevatron. Nuovo Cimento 123B, 1–8 (2008). arXiv:0807.3248 ADSGoogle Scholar
  75. 75.
    D0, Measurement of the top quark mass in the lepton + jets channel using DØ Run II data. D0 note 4574-CONF, August, 2004 Google Scholar
  76. 76.
    D0, Measurement of the top quark mass in the lepton + jets channel using DØ Run II data: The low bias template method. D0 note 4728-CONF, 2005 Google Scholar
  77. 77.
    P. Abreu et al. (DELPHI), Measurement of the W pair cross-section and of the W mass in e + e interactions at 172 GeV. Eur. Phys. J. C 2, 581–595 (1998) ADSCrossRefGoogle Scholar
  78. 78.
    P. Abreu et al. (DELPHI), Measurement of the mass of the W boson using direct reconstruction at \(\sqrt{s} = 183\ \mbox{GeV}\). Phys. Lett. B 462, 410–424 (1999) ADSCrossRefGoogle Scholar
  79. 79.
    V.M. Abazov et al. (D0), Measurement of the top quark mass in the lepton + jets channel using the ideogram method. Phys. Rev. D 75, 092001 (2007). arXiv:hep-ex/0702018 ADSCrossRefGoogle Scholar
  80. 80.
    V.M. Abazov et al. (D0), Measurement of the \(t\bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\) using kinematic characteristics of lepton + jets events. Phys. Lett. B 626, 45–54 (2005). arXiv:hep-ex/0504043 ADSCrossRefGoogle Scholar
  81. 81.
    Y. Peters, K. Hamacher, D. Wicke (D0), Precise tuning of the b fragmentation for the D0 Monte Carlo. FERMILAB-TM-2425-E, D0 Note 5229 Google Scholar
  82. 82.
    V.M. Abazov et al. (D0), A precision measurement of the mass of the top quark. Nature 429, 638–642 (2004). arXiv:hep-ex/0406031 ADSCrossRefGoogle Scholar
  83. 83.
    K. Kondo, T. Chikamatsu, S.H. Kim, Dynamical likelihood method for reconstruction of events with missing momentum. 3: Analysis of a CDF high p T event as \(t\bar{t}\) production. J. Phys. Soc. Jpn. 62, 1177–1182 (1993) ADSCrossRefGoogle Scholar
  84. 84.
    R.H. Dalitz, G.R. Goldstein, Test of analysis method for top-antitop production and decay events. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 455, 2803–2834 (1999). arXiv:hep-ph/9802249 ADSCrossRefGoogle Scholar
  85. 85.
    D0, Measurement of the top quark mass in the lepton + jets final state with the matrix element method. Phys. Rev. D 74, 092005 (2006). hep-ex/0609053 ADSCrossRefGoogle Scholar
  86. 86.
    V.M. Abazov et al. (D0), Precise measurement of the top quark mass from lepton + jets events at D0. Phys. Rev. Lett. 101, 182001 (2008). arXiv:0807.2141 ADSCrossRefGoogle Scholar
  87. 87.
    D0, Measurement of the top quark mass in the lepton + jets channel using the matrix element method in 2.2 fb−1 of DØRun II data. D0 note 5750-CONF, July, 2008 Google Scholar
  88. 88.
    D0, Measurement of the top quark mass in the lepton + jets channel using the matrix element method in 3.6 fb−1 of DØRun II data. D0 note 5877-CONF, March, 2009 Google Scholar
  89. 89.
    L. Lyons, D. Gibaut, P. Clifford, How to combine correlated estimates of a single physical quantity. Nucl. Instrum. Methods A 270, 110 (1988) ADSCrossRefGoogle Scholar
  90. 90.
    The Tevatron Electroweak Working Group for the CDF and D0 Collaborations, Combination of CDF and D0 results on the mass of the top quark. arXiv:1007.3178, 2010
  91. 91.
    A. Abulencia et al. (CDF), Precise measurement of the top quark mass in the lepton + jets topology at CDF II. Phys. Rev. Lett. 99, 182002 (2007). arXiv:hep-ex/0703045 ADSCrossRefGoogle Scholar
  92. 92.
    CDF, Top mass measurement using matrix element method and lepton + jets channel. CDF Conf. Note 9725, Apr., 2009 Google Scholar
  93. 93.
    A. Abulencia et al. (CDF), Measurement of the top quark mass with the dynamical likelihood method using lepton plus jets events with b-tags in \(p\bar{p}\) collisions at \(\sqrt{s} =1.96\ \mbox{TeV}\). Phys. Rev. D 73, 092002 (2006). hep-ex/0512009 ADSCrossRefGoogle Scholar
  94. 94.
    CDF, Top quark mass measurement using the dynamical likelihood template medhod in the lepton plus jets channel at CDF Run II. CDF Note 9135, Dec., 2007 Google Scholar
  95. 95.
    CDF, Top mass measurement in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration and in situ jet calibration with 2.7 fb−1. CDF Conf. Note 9427, July, 2008 Google Scholar
  96. 96.
    CDF, Top mass measurement in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration and in situ jet calibration with 3.2 fb−1. CDF Conf. Note 9692, Feb., 2009 Google Scholar
  97. 97.
    T. Aaltonen et al. (CDF), Top quark mass measurement in the lepton plus jets channel using a modified matrix element method. Phys. Rev. D 79, 072001 (2009). arXiv:0812.4469 ADSCrossRefGoogle Scholar
  98. 98.
    CDF, Top mass measurement in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration and in situ jet calibration with 5.6 fb−1. CDF Conf. Note 10191, June, 2010 Google Scholar
  99. 99.
    T. Aaltonen et al. (CDF), Top quark mass measurement in the lepton + jets channel using a matrix element method and in situ jet energy calibration. Phys. Rev. Lett. 105, 252001 (2010). arXiv:1010.4582 ADSCrossRefGoogle Scholar
  100. 100.
    R. Kleiss, W.J. Stirling, Top quark production at hadron colliders: Some useful formulae. Z. Phys. C 40, 419–423 (1988) ADSCrossRefGoogle Scholar
  101. 101.
    A. Abulencia et al. (CDF, Run II), Measurement of the top quark mass in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\) using the decay length technique. Phys. Rev. D 75, 071102 (2007). arXiv:hep-ex/0612061 ADSCrossRefGoogle Scholar
  102. 102.
    T. Aaltonen et al. (CDF), Measurements of the top-quark mass using charged particle tracking. Phys. Rev. D 81, 032002 (2010). arXiv:0910.0969 ADSCrossRefGoogle Scholar
  103. 103.
    CDF, Measurement of the top quark mass with 2.7 fb−1 of CDF RunII data in the lepton + jets channel using only leptons. CDF Note 9683, July, 2009 Google Scholar
  104. 104.
    CDF, Measurement of the top quark mass from the lepton p T in the \(t\bar{t}\rightarrow{}\) dilepton channel using b-tagging at 2.8 fb−1. CDF Note 9831, July, 2009 Google Scholar
  105. 105.
    CDF, Lepton + jets and dilepton combined measurement of the top quark mass from the leptons’ p T using b-tagging at 2.8 fb−1. CDF Note 9881, Aug., 2009 Google Scholar
  106. 106.
    T. Aaltonen et al. (CDF), Measurement of the top quark mass at CDF using the ‘neutrino φ weighting’ template method on a lepton plus isolated track sample. Phys. Rev. D 79, 072005 (2009). arXiv:0901.3773 ADSCrossRefGoogle Scholar
  107. 107.
    G. Corcella et al., HERWIG 6.5: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 01, 010 (2001). arXiv:hep-ph/0011363 ADSCrossRefGoogle Scholar
  108. 108.
    D0, Measurement of the top quark mass in dilepton final states via neutrino weighting. D0 note 5746-CONF, July, 2008 Google Scholar
  109. 109.
    V.M. Abazov et al. (D0), Measurement of the top quark mass in final states with two leptons. Phys. Rev. D 80, 092006 (2009). arXiv:0904.3195 ADSCrossRefGoogle Scholar
  110. 110.
    V.M. Abazov et al. (D0), Measurement of the top quark mass in the dilepton channel. Phys. Lett. B 655, 7 (2007). arXiv:hep-ex/0609056 ADSCrossRefGoogle Scholar
  111. 111.
    R.H. Dalitz, G.R. Goldstein, The decay and polarization properties of the top quark. Phys. Rev. D 45, 1531–1543 (1992) ADSCrossRefGoogle Scholar
  112. 112.
    D0, Measurement of the top quark mass in the dilepton channel using the matrix weigthing method at DØ. D0 note 5463-CONF, Aug., 2007 Google Scholar
  113. 113.
    D0, Measurement of the mass of the top quark in +jets final states at DØ with 5.3 fb−1. D0 note 6104-CONF, Aug., 2010 Google Scholar
  114. 114.
    A. Abulencia et al. (CDF), Top quark mass measurement from dilepton events at cdf ii. Phys. Rev. Lett. 96, 152002 (2006). hep-ex/0512070 ADSCrossRefGoogle Scholar
  115. 115.
    A. Abulencia et al. (CDF), Top quark mass measurement from dilepton events at CDF II with the matrix-element method. Phys. Rev. D 74, 032009 (2006). hep-ex/0605118 ADSCrossRefGoogle Scholar
  116. 116.
    CDF, Measurement of the top quark mass in the dilepton channel using a matrix element method with 1.8 fb−1. CDF Note 8951, Aug., 2007 Google Scholar
  117. 117.
    D0, Measurement of the top quark mass in the electron-muon channel using the matrix element method with 3.6 fb−1. D0 note 5897-CONF, Mar., 2009 Google Scholar
  118. 118.
    V.M. Abazov et al. (D0), Measurement of the top quark mass in all-jet events. Phys. Lett. B 606, 25–33 (2005). hep-ex/0410086 ADSCrossRefGoogle Scholar
  119. 119.
    T. Aaltonen et al. (The CDF), Measurement of the top quark mass and \(p\bar{p}\)\(t\bar{t}\) cross section in the all-hadronic mode with the CDFII detector. Phys. Rev. D 81, 052011 (2010). arXiv:1002.0365 ADSCrossRefGoogle Scholar
  120. 120.
    R.D. Field (CDF), The underlying event in hard scattering processes. arXiv:hep-ph/0201192, CDF Note 6403; further recent talks available from webpage http://www.phys.ufl.edu/~rfield/cdf/, 2002
  121. 121.
    T. Aaltonen et al. (CDF), Measurement of the top-quark mass in all-hadronic decays in p anti-p collisions at CDF II. Phys. Rev. Lett. 98, 142001 (2007). arXiv:hep-ex/0612026 ADSCrossRefGoogle Scholar
  122. 122.
    CDF, Measurement of the top quark mass with in situ jet energy calibration in the all-hadronic channel using the ideogram method with 1.9 fb−1. CDF Note 9265, Mar., 2008 Google Scholar
  123. 123.
    V.M. Abazov et al. (D0), Top quark mass extraction from \(t\bar{t}\) cross section measurements. DØ Note 5742 conf, 2008 Google Scholar
  124. 124.
    V.M. Abazov et al. (D0), Measurement of the \(t \bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 100, 192004 (2008). arXiv:0803.2779 ADSCrossRefGoogle Scholar
  125. 125.
    V.M. Abazov et al. (D0), Measurement of the ttbar production cross section and top quark mass extraction using dilepton events in ppbar collisions. Phys. Lett. B 679, 177–185 (2009). arXiv:0901.2137 CrossRefADSGoogle Scholar
  126. 126.
    V.M. Abazov et al. (D0), Combination of \(t\bar{t}\) cross section measurements and constraints on the mass of the top quark and its decays into charged Higgs bosons. Phys. Rev. D 80, 071102 (2009). arXiv:0903.5525 ADSCrossRefGoogle Scholar
  127. 127.
    W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, QCD corrections to heavy quark production in p anti-p collisions. Phys. Rev. D 40, 54–82 (1989) ADSCrossRefGoogle Scholar
  128. 128.
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 ADSCrossRefGoogle Scholar
  129. 129.
    U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass. Phys. Rev. D 80, 054009 (2009). arXiv:0906.5273 ADSCrossRefGoogle Scholar
  130. 130.
    J. Rathsman, A generalised area law for hadronic string reinteractions. Phys. Lett. B 452, 364–371 (1999). hep-ph/9812423 ADSCrossRefGoogle Scholar
  131. 131.
    B.R. Webber, Colour reconnection and Bose-Einstein effects. J. Phys. G 24, 287–296 (1998). arXiv:hep-ph/9708463 ADSCrossRefGoogle Scholar
  132. 132.
    A.B. Galtieri, MC4LHC Readiness Workshop, CERN http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=74601, March, 2010
  133. 133.
    D.E. Acosta et al. (CDF), Study of jet shapes in inclusive jet production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Rev. D 71, 112002 (2005). arXiv:hep-ex/0505013 ADSCrossRefGoogle Scholar
  134. 134.
    F. Fiedler, Independent measurement of the top quark mass and the light- and bottom-jet energy scales at hadron colliders. Eur. Phys. J. C 53, 41–48 (2008). arXiv:0706.1640 ADSCrossRefGoogle Scholar
  135. 135.
    F. Fiedler, A. Grohsjean, P. Haefner, P. Schieferdecker, The matrix element method and its application to measurements of the top quark mass. Nucl. Instrum. Methods A 624, 203–218 (2010). arXiv:1003.1316 ADSCrossRefGoogle Scholar
  136. 136.
    V.M. Abazov (D0) et al., Direct measurement of the mass difference between top and antitop quarks. Phys. Rev. Lett. 103, 132001 (2009). arXiv:0906.1172 ADSCrossRefGoogle Scholar
  137. 137.
    CDF, Measurement of top quark and anti-top quark mass difference in the lepton + jets channel. CDF Note 10173, June, 2010 Google Scholar
  138. 138.
    LEP Electorweak Working Group, A combination of preliminary electroweak measurements and constraints on the standard model. LEPEWWG/94-02, ALEPH 94-121 PHYSIC 94-105, DELPHI 94-110 PHYS 427, L3 Note 1631, Opal TN245, July, 1994 Google Scholar
  139. 139.
    The ALEPH, DELPHI, L3, OPAL, SLD Collaboration, The LEP Electroweak Working Group, The SLD Electroweak Heavy Flavour Groups, Precision electroweak measurements on the Z resonance. Phys. Rep. 427, 257 (2006). arXiv:hep-ex/0509008 ADSGoogle Scholar
  140. 140.
    G. Aad et al. (Atlas), Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \(\sqrt{s}=7\ \mbox{TeV}\). arXiv:1012.1792
  141. 141.
    V. Khachatryan et al. (CMS), First measurement of the cross section for top-quark pair production in proton–proton collisions at sqrt(s)=7 TeV. Phys. Lett. B 695, 424–443 (2011). arXiv:1010.5994 CrossRefGoogle Scholar
  142. 142.
    ATLAS, ATLAS: detector and physics performance technical design report. Vol. 2. CERN-LHCC-99-15 Google Scholar
  143. 143.
    G.L. Bayatian et al. (CMS), CMS technical design report, volume II: Physics performance. J. Phys. G 34, 995–1579 (2007). CERN-LHCC-2006-021, CMS-TDR-008-2 CrossRefGoogle Scholar
  144. 144.
    G. Aad et al. (ATLAS), Expected performance of the ATLAS experiment—detector, trigger and physics. arXiv:0901.0512
  145. 145.
    A. Kharchilava, Top mass determination in leptonic final states with J/ψ. Phys. Lett. B 476, 73–78 (2000). arXiv:hep-ph/9912320 ADSCrossRefGoogle Scholar
  146. 146.
    R. Chierici, A. Dierlamm, Determination of the top mass with exclusive events tWblνJ/ψX. CERN-CMS-NOTE-2006-058, 2006 Google Scholar
  147. 147.
    A.H. Hoang, I.W. Stewart, Top-mass measurements from jets and the Tevatron top mass. Nuovo Cimento B 123, 1092–1100 (2008) ADSGoogle Scholar
  148. 148.
    A. Abulencia et al. (CDF), Search for V+A current in top quark decay in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 98, 072001 (2007). arXiv:hep-ex/0608062 ADSCrossRefGoogle Scholar
  149. 149.
    T. Aaltonen et al. (CDF), Measurement of W-boson helicity fractions in top-quark decays using cos θ . Phys. Lett. B 674, 160–167 (2009). arXiv:0811.0344 ADSCrossRefGoogle Scholar
  150. 150.
    CDF, W boson helicity measurement in \(t\bar{t}\) dilepton channel at cdf. CDF Conf. Note 10333, Nov., 2010 Google Scholar
  151. 151.
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 09, 028 (2007). arXiv:0706.2334 ADSCrossRefGoogle Scholar
  152. 152.
    CDF, Measurements of W boson fractions in top quark decay to lepton + jets events using a matrix element analysis technique with 1.9 fb−1 of data. CDF Conf. Note 9144, Dec., 2007 Google Scholar
  153. 153.
    CDF, Measurements of W boson fractions in top quark decay to lepton + jets events using a matrix element analysis technique with 2.7 fb−1 of data. CDF Conf. Note 10004, Nov., 2009 Google Scholar
  154. 154.
    V.M. Abazov et al. (D0), Measurement of the W boson helicity in top quark decay at D0. Phys. Rev. D 75, 031102 (2007). arXiv:hep-ex/0609045 ADSCrossRefGoogle Scholar
  155. 155.
    V.M. Abazov et al. (D0), Measurement of the W boson helicity in top quark decays using 5.4fb−1 of \(p\bar{p}\) collision data. Phys. Rev. D 83, 032009 (2011). arXiv:1011.6549 ADSCrossRefGoogle Scholar
  156. 156.
    J. Alwall et al., Is V tb≃1? Eur. Phys. J. C 49, 791–801 (2007). arXiv:hep-ph/0607115 ADSCrossRefGoogle Scholar
  157. 157.
    V.M. Abazov et al. (D0), Observation of single top-quark production. Phys. Rev. Lett. 103, 092001 (2009). arXiv:0903.0850 ADSCrossRefGoogle Scholar
  158. 158.
    T. Aaltonen et al. (CDF), First observation of electroweak single top quark production. Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885 ADSCrossRefGoogle Scholar
  159. 159.
    CDF, D0, T. E. W. Group, Combination of CDF and D0 measurements of the single top production cross section. arXiv:0908.2171
  160. 160.
    D. Acosta et al. (CDF), Measurement of B(tWb)/B(tWq) at the Collider Detector at Fermilab. Phys. Rev. Lett. 95, 102002 (2005). hep-ex/0505091 ADSCrossRefGoogle Scholar
  161. 161.
    G.J. Feldman, R.D. Cousins, A unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873–3889 (1998). arXiv:physics/9711021 ADSCrossRefGoogle Scholar
  162. 162.
    V.M. Abazov et al. (D0), Simultaneous measurement of the ratio \(\mathcal{B}(t\to Wb) /\mathcal{B}(t\to Wq)\) and the top quark pair production cross section with the D0 detector at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 100, 192003 (2008). arXiv:0801.1326 ADSCrossRefGoogle Scholar
  163. 163.
    S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970) ADSCrossRefGoogle Scholar
  164. 164.
    J.L. Diaz-Cruz, R. Martinez, M.A. Perez, A. Rosado, Flavor changing radiative decay of THF t quark. Phys. Rev. D 41, 891–894 (1990) ADSCrossRefGoogle Scholar
  165. 165.
    G. Eilam, J.L. Hewett, A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models. Phys. Rev. D 44, 1473–1484 (1991). Phys. Rev. D 59 039901 (1999), Erratum ADSCrossRefGoogle Scholar
  166. 166.
    B. Mele, S. Petrarca, A. Soddu, A new evaluation of the tc H decay width in the standard model. Phys. Lett. B 435, 401–406 (1998). arXiv:hep-ph/9805498 ADSCrossRefGoogle Scholar
  167. 167.
    H. Fritzsch, t quarks may decay into Z bosons and charm. Phys. Lett. B 224, 423 (1989) ADSCrossRefGoogle Scholar
  168. 168.
    J.A. Aguilar-Saavedra, Top flavour-changing neutral interactions: Theoretical expectations and experimental detection. Acta Phys. Pol. A 35, 2695–2710 (2004). arXiv:hep-ph/0409342 ADSGoogle Scholar
  169. 169.
    T. Aaltonen et al. (CDF), Search for the flavor changing neutral current decay tZq in \(p \bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Rev. Lett. 101, 192002 (2008). arXiv:0805.2109 ADSCrossRefGoogle Scholar
  170. 170.
    T. Aaltonen et al. (CDF), Search for top-quark production via flavor-changing neutral currents in W+1 jet events at CDF. Phys. Rev. Lett. 102, 151801 (2009). arXiv:0812.3400 ADSCrossRefGoogle Scholar
  171. 171.
    V.M. Abazov et al. (D0), Search for production of single top quarks via flavor-changing neutral currents at the Tevatron. Phys. Rev. Lett. 99, 191802 (2007). arXiv:hep-ex/0702005 ADSCrossRefGoogle Scholar
  172. 172.
    V.M. Abazov et al. (D0), Search for flavor changing neutral currents via quark-gluon couplings in single top quark production using 2.3 fb−1 of \(p\bar{p}\) collisions. Phys. Lett. B 693, 81–87 (2010). arXiv:1006.3575 ADSCrossRefGoogle Scholar
  173. 173.
    A. Heister et al. (ALEPH), Search for single top production in e + e collisions at \(\sqrt{s}\) up to 209 GeV. Phys. Lett. B 543, 173–182 (2002). arXiv:hep-ex/0206070 ADSCrossRefGoogle Scholar
  174. 174.
    J. Abdallah, et al. (DELPHI), Search for single top production via FCNC at LEP at \(\sqrt{s} = 189\ \mbox{GeV}\mbox{--}208\ \mbox{GeV}\). Phys. Lett. B 590, 21–34 (2004). arXiv:hep-ex/0404014 ADSCrossRefGoogle Scholar
  175. 175.
    P. Achard et al. (L3), Search for single top production at LEP. Phys. Lett. B 549, 290–300 (2002). arXiv:hep-ex/0210041 ADSCrossRefGoogle Scholar
  176. 176.
    G. Abbiendi et al. (OPAL), Search for single top quark production at LEP2. Phys. Lett. B 521, 181–194 (2001). arXiv:hep-ex/0110009 ADSCrossRefGoogle Scholar
  177. 177.
    S. Chekanov et al. (ZEUS), Search for single-top production in ep collisions at HERA. Phys. Lett. B 559, 153–170 (2003). arXiv:hep-ex/0302010 ADSCrossRefGoogle Scholar
  178. 178.
    A. Aktas et al. (H1), Search for single top quark production in ep collisions at HERA. Eur. Phys. J. C 33, 9–22 (2004). arXiv:hep-ex/0310032 CrossRefGoogle Scholar
  179. 179.
    H1, Search for single top quark production in ep collisions at HERA. Contributed paper to EPS2007, abstract 776, H1prelim-07-163, 2007 Google Scholar
  180. 180.
    F.D. Aaron et al. (H1), Search for single top quark production at HERA. arXiv:0904.3876
  181. 181.
    F. Abe et al. (CDF), Search for flavor-changing neutral current decays of the top quark in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.8\ \mbox{TeV}\). Phys. Rev. Lett. 80, 2525–2530 (1998) ADSCrossRefGoogle Scholar
  182. 182.
    T. Stelzer, W.F. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81, 357–371 (1994). arXiv:hep-ph/9401258 ADSCrossRefGoogle Scholar
  183. 183.
    F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 02, 027 (2003). arXiv:hep-ph/0208156 ADSCrossRefGoogle Scholar
  184. 184.
    S.R. Slabospitsky, L. Sonnenschein, TopReX generator (version 3.25): Short manual. Comput. Phys. Commun. 148, 87–102 (2002). arXiv:hep-ph/0201292 ADSCrossRefGoogle Scholar
  185. 185.
    CDF, Combination of CDF single top searches with 2.2 fb−1 of data. CDF Note 9251, Mar., 2008 Google Scholar
  186. 186.
    J.J. Liu, C.S. Li, L.L. Yang, L.G. Jin, Next-to-leading order QCD corrections to the direct top quark production via model-independent FCNC couplings at hadron colliders. Phys. Rev. D 72, 074018 (2005). arXiv:hep-ph/0508016 ADSCrossRefGoogle Scholar
  187. 187.
    L.L. Yang, C.S. Li, Y. Gao, J.J. Liu, Threshold resummation effects in direct top quark production at hadron colliders. Phys. Rev. D 73, 074017 (2006). arXiv:hep-ph/0601180 ADSCrossRefGoogle Scholar
  188. 188.
    V.M. Abazov et al. (D0), Multivariate searches for single top quark production with the D0 detector. Phys. Rev. D 75, 092007 (2007). arXiv:hep-ex/0604020 ADSCrossRefGoogle Scholar
  189. 189.
    V.M. Abazov et al. (D0), Evidence for production of single top quarks. Phys. Rev. D 78, 012005 (2008). arXiv:0803.0739 ADSCrossRefGoogle Scholar
  190. 190.
    V.M. Abazov et al. (D0), Measurement of the t-channel single top quark production cross section. Phys. Lett. B 682, 363–369 (2010). arXiv:0907.4259 ADSCrossRefGoogle Scholar
  191. 191.
    E.E. Boos, V.E. Bunichev, L.V. Dudko, V.I. Savrin, A.V. Sherstnev, Method for simulating electroweak top-quark production events in the NLO approximation: SingleTop event generator. Phys. At. Nucl. 69, 1317–1329 (2006) CrossRefGoogle Scholar
  192. 192.
    E. Boos et al. (CompHEP), CompHEP 4.4: Automatic computations from Lagrangians to events. Nucl. Instrum. Methods A 534, 250–259 (2004). arXiv:hep-ph/0403113 ADSCrossRefGoogle Scholar
  193. 193.
    V.M. Abazov et al. (D0), Experimental discrimination between charge 2e/3 top quark and charge 4e/3 exotic quark production scenarios. Phys. Rev. Lett. 98, 041801 (2007). arXiv:hep-ex/0608044 ADSCrossRefGoogle Scholar
  194. 194.
    D0, Clarification on the D0 measurement of the top quark charge. http://www-d0.fnal.gov/Run2Physics/WWW/results/final/TOP/T06D/extra/topQ.htm, April, 2007
  195. 195.
    CDF, First CDF measurement of the top quark charge using the top decay products. CDF Note 8967, Aug., 2007 Google Scholar
  196. 196.
    CDF, Exclusion of exotic top-like quark with −4/3 electric charge using soft lepton tags. CDF Note 9939, Jan., 2010 Google Scholar
  197. 197.
    D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152–155 (2001) ADSCrossRefGoogle Scholar
  198. 198.
    T. Aaltonen et al. (CDF), Searching the inclusive Open image in new window b-quark signature for radiative top quark decay and non-standard-model processes. Phys. Rev. D 80, 011102 (2009). arXiv:0906.0518 ADSCrossRefGoogle Scholar
  199. 199.
    I.I.Y. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kühn, P.M. Zerwas, Production and decay properties of ultraheavy quarks. Phys. Lett. B 181, 157 (1986) ADSCrossRefGoogle Scholar
  200. 200.
    V.D. Barger, J. Ohnemus, R.J.N. Phillips, Spin correlation effects in the hadroproduction and decay of very heavy top quark pairs. Int. J. Mod. Phys. A 4, 617 (1989) ADSCrossRefGoogle Scholar
  201. 201.
    T. Stelzer, S. Willenbrock, Spin correlation in top quark production at hadron colliders. Phys. Lett. B 374, 169–172 (1996). arXiv:hep-ph/9512292 ADSCrossRefGoogle Scholar
  202. 202.
    W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer, Top quark spin correlations at hadron colliders: Predictions at next-to-leading order QCD. Phys. Rev. Lett. 87, 242002 (2001). arXiv:hep-ph/0107086 ADSCrossRefGoogle Scholar
  203. 203.
    W. Bernreuther, Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC. Nucl. Phys. B 837, 90–121 (2010). arXiv:1003.3926 ADSMATHCrossRefGoogle Scholar
  204. 204.
    CDF, A measurement of the \(t\bar{t}\) spin correlation coefficient in 2.8 fb−1 dilepton candidates. CDF Note 9824, June, 2009 Google Scholar
  205. 205.
    V.M. Abazov et al. (D0), Spin correlations in \(t\bar{t}\) production in dilepton events. DØNote 5950 conf, July, 2009 Google Scholar
  206. 206.
    CDF, Measurement of \(t\bar{t}\) halicity fraction and spin correlation using reconstructed lepton + jets events. CDF Note 10211, Jan., 2010 Google Scholar
  207. 207.
    CDF, Measurement of \(t\bar{t}\) halicity fraction and spin correlation using reconstructed lepton + jets events. CDF Note 10211, July, 2010 Google Scholar
  208. 208.
    F. Halzen, P. Hoyer, C.S. Kim, Forward–backward asymmetry of hadroproduced heavy quarks in QCD. Phys. Lett. B 195, 74 (1987) ADSCrossRefGoogle Scholar
  209. 209.
    P. Nason, S. Dawson, R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions. Nucl. Phys. B 327, 49–92 (1989). Nucl. Phys. B 335, 260 (1990), Erratum ADSCrossRefGoogle Scholar
  210. 210.
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, QCD corrections to heavy quark production in hadron hadron collisions. Nucl. Phys. B 351, 507–560 (1991) ADSCrossRefGoogle Scholar
  211. 211.
    J.H. Kühn, G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders. Phys. Rev. D 59, 054017 (1999). arXiv:hep-ph/9807420 ADSCrossRefGoogle Scholar
  212. 212.
    M.T. Bowen, S.D. Ellis, D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron. Phys. Rev. D 73, 014008 (2006). arXiv:hep-ph/0509267 ADSCrossRefGoogle Scholar
  213. 213.
    V.M. Abazov et al. (D0), First measurement of the forward–backward charge asymmetry in top quark pair production. Phys. Rev. Lett. 100, 142002 (2008). arXiv:0712.0851 ADSCrossRefGoogle Scholar
  214. 214.
    T. Aaltonen et al. (CDF), Forward–backward asymmetry in top quark production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Rev. Lett. 101, 202001 (2008). arXiv:0806.2472 ADSCrossRefGoogle Scholar
  215. 215.
    V.M. Abazov et al. (D0), Measurement of the forward–backward production asymmetry of t and \(\bar{t}\) quarks in \(p\bar{p}\rightarrow t\bar{t}\) events. DØ Note 6062 conf, July, 2010 Google Scholar
  216. 216.
    T. Aaltonen et al. (CDF), Evidence for a mass dependent forward–backward asymmetry in top quark pair production. arXiv:1101.0034
  217. 217.
    O. Antunano, J.H. Kühn, G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders. Phys. Rev. D 77, 014003 (2008). arXiv:0709.1652 ADSCrossRefGoogle Scholar
  218. 218.
    S. Dittmaier, P. Uwer, S. Weinzierl, NLO QCD corrections to \(t\bar{t} +\mathrm{jet}\) production at hadron colliders. Phys. Rev. Lett. 98, 262002 (2007). arXiv:hep-ph/0703120 ADSCrossRefGoogle Scholar
  219. 219.
    J.M. Campbell, R.K. Ellis, An update on vector boson pair production at hadron colliders. Phys. Rev. D 60, 113006 (1999). arXiv:hep-ph/9905386 ADSCrossRefGoogle Scholar
  220. 220.
    S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 06, 029 (2002). arXiv:hep-ph/0204244 ADSCrossRefGoogle Scholar
  221. 221.
    T. Aaltonen et al. (CDF), First measurement of the \(t\bar{t}\) differential cross section \({\mathrm{d}\sigma/\mathrm{d}m_{t\bar{t}}}\) in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Rev. Lett. 102, 222003 (2009). arXiv:0903.2850 ADSCrossRefGoogle Scholar
  222. 222.
    CDF, Measurement of the \(t\bar{t}\) differential cross section, \(\mathrm{d}\sigma/\mathrm{d}M_{t\bar{t}}\) in 2.7 fb−1 of data. Public analysis webpage http://www-cdf.fnal.gov/physics/new/top/2008/tprop/dXs_27fb/webpage/dXs27fb_Public.htm, Nov., 2008
  223. 223.
    D.E. Acosta et al. (CDF), Measurement of the cross section for \(t\bar{t}\) production in \(p\bar{p}\) collisions using the kinematics of lepton + jets events. Phys. Rev. D 72, 052003 (2005). arXiv:hep-ex/0504053 ADSCrossRefGoogle Scholar
  224. 224.
    A. Hocker, V. Kartvelishvili, SVD approach to data unfolding. Nucl. Instrum. Methods A 372, 469–481 (1996). arXiv:hep-ph/9509307 ADSCrossRefGoogle Scholar
  225. 225.
    T.W. Anderson, D.A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 23(2), 193–212 (1952) MATHMathSciNetCrossRefGoogle Scholar
  226. 226.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999). arXiv:hep-ph/9905221 ADSMATHMathSciNetCrossRefGoogle Scholar
  227. 227.
    T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A 434, 435–443 (1999). arXiv:hep-ex/9902006 ADSCrossRefGoogle Scholar
  228. 228.
    A. Read, Workshop on confidence limits, CERN, Geneva, Switzerland, 17–18 Jan. 2000: Proceedings. CERN-2000-005 Google Scholar
  229. 229.
    T. Arens, L.M. Sehgal, Azimuthal correlation of charged leptons produced in \(p \bar{p} \to t\bar{t} +\). Phys. Lett. B 302, 501–506 (1993) ADSCrossRefGoogle Scholar
  230. 230.
    CDF, Measurements of the gluon fusion fraction in \(t\bar{t}\) production using azimuthal correlation of charged leptons. CDF Conf. Note 9432, July, 2008 Google Scholar
  231. 231.
    T. Aaltonen et al. (CDF), Measurement of the fraction of \(t \bar{t}\) production via gluon-gluon fusion in \(p \bar{p}\) collisions at \(\sqrt{s} =\allowbreak 1.96\)-TeV. Phys. Rev. D 79, 031101 (2009). arXiv:0807.4262 ADSCrossRefGoogle Scholar
  232. 232.
    T. Aaltonen et al. (CDF), First measurement of the fraction of top quark pair production through gluon-gluon fusion. Phys. Rev. D 78, 111101 (2008). arXiv:0712.3273 ADSCrossRefGoogle Scholar
  233. 233.
    T. Aaltonen et al. (CDF), First direct bound on the total width of the top quark in \(p \bar{p}\) collisions at \(\sqrt{s}= 1.96\) TeV. Phys. Rev. Lett. 102, 042001 (2009). arXiv:0808.2167 ADSCrossRefGoogle Scholar
  234. 234.
    CDF, A measurement of the top quark width using the template method in the lepton plus jets channel with 4.3 fb−1. CDF Note 10035, Jan., 2010 Google Scholar
  235. 235.
    CDF, First direct limit on the top quark lifetime. CDF Note 8104, Feb., 2006 Google Scholar
  236. 236.
    V.M. Abazov et al. (D0), Determination of the width of the top quark. arXiv:1009.5686
  237. 237.
    J.H. Kühn, G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks. Phys. Rev. Lett. 81, 49–52 (1998). arXiv:hep-ph/9802268 ADSCrossRefGoogle Scholar
  238. 238.
    Y.-k. Wang, B. Xiao, S.-h. Zhu, One-side forward–backward asymmetry in top quark pair production at CERN large hadron collider. Phys. Rev. D 82, 094011 (2010). arXiv:1008.2685 ADSCrossRefGoogle Scholar
  239. 239.
    B. Xiao, Y.-K. Wang, Z.-Q. Zhou, S.-h. Zhu, Edge charge asymmetry in top pair production at the LHC. arXiv:1101.2507
  240. 240.
    A. Stange, S. Willenbrock, Yukawa correction to top quark production at the Tevatron. Phys. Rev. D 48, 2054–2061 (1993). arXiv:hep-ph/9302291 ADSCrossRefGoogle Scholar
  241. 241.
    T.-F. Feng, X.-Q. Li, J. Maalampi, The anomalous Higgs—top couplings in the MSSM. Phys. Rev. D 69, 115007 (2004). arXiv:hep-ph/0310247 ADSCrossRefGoogle Scholar
  242. 242.
    J.A. Aguilar-Saavedra, Light Higgs boson discovery in the Standard Model and beyond. J. High Energy Phys. 12, 033 (2006). arXiv:hep-ph/0603200 ADSCrossRefGoogle Scholar
  243. 243.
    D0, Search for the Standard Model Higgs boson in the \(t\bar{t}h\rightarrow t\bar{t} b\bar{b}\) channel. D0 note 5739-conf, July, 2008 Google Scholar
  244. 244.
    A. Abulencia et al. (CDF), Search for charged Higgs bosons from top quark decays in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 96, 042003 (2006). hep-ex/0510065. http://www-cdf.fnal.gov/physics/new/top/2005/ljets/charged_Higgs/Higgs/V2/HiggsAnalysis_publicV2.html ADSCrossRefGoogle Scholar
  245. 245.
    S.P. Martin, A supersymmetry primer. arXiv:hep-ph/9709356
  246. 246.
    T. Aaltonen et al. (CDF), Search for charged Higgs bosons in decays of top quarks in \(p-\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 103, 101803 (2009). arXiv:0907.1269 ADSCrossRefGoogle Scholar
  247. 247.
    V.M. Abazov et al. (D0), Search for charged Higgs bosons in top quark decays. Phys. Lett. B 682, 278–286 (2009). arXiv:0908.1811 ADSCrossRefGoogle Scholar
  248. 248.
    V.M. Abazov et al. (D0), Search for charged Higgs bosons in decays of top quarks. Phys. Rev. D 80, 051107 (2009). arXiv:0906.5326 ADSCrossRefGoogle Scholar
  249. 249.
    V.M. Abazov et al. (D0), Search for charged Higgs bosons decaying to top and bottom quarks in \(p \bar{p}\) collisions. Phys. Rev. Lett. 102, 191802 (2009). arXiv:0807.0859 ADSCrossRefGoogle Scholar
  250. 250.
    E. Boos, V. Bunichev, L. Dudko, M. Perfilov, Interference between W′ and W in single-top quark production processes. Phys. Lett. B 655, 245–250 (2007). arXiv:hep-ph/0610080 ADSGoogle Scholar
  251. 251.
    V.M. Abazov et al. (D0), Search for W′ Boson resonances decaying to a top quark and a bottom quark. Phys. Rev. Lett. 100, 211803 (2008). arXiv:0803.3256 ADSCrossRefGoogle Scholar
  252. 252.
    Z. Sullivan, Fully differential W′ production and decay at next-to- leading order in QCD. Phys. Rev. D 66, 075011 (2002). arXiv:hep-ph/0207290 ADSCrossRefGoogle Scholar
  253. 253.
    T. Aaltonen et al. (CDF), Search for the production of narrow tb resonances in 1.9 fb−1 of ppbar collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 103, 041801 (2009). arXiv:0902.3276 ADSCrossRefGoogle Scholar
  254. 254.
    A. Leike, The phenomenology of extra neutral gauge bosons. Phys. Rep. 317, 143 (1999). arXiv:hep-ph/9805494 ADSCrossRefGoogle Scholar
  255. 255.
    B. Lillie, L. Randall, L.-T. Wang, The bulk RS KK-gluon at the LHC. J. High Energy Phys. 09, 074 (2007). arXiv:hep-ph/0701166 ADSCrossRefGoogle Scholar
  256. 256.
    T.G. Rizzo, Testing the nature of Kaluza-Klein excitations at future lepton colliders. Phys. Rev. D 61, 055005 (2000). arXiv:hep-ph/9909232 ADSCrossRefGoogle Scholar
  257. 257.
    L.M. Sehgal, M. Wanninger, Forward–backward asymmetry in two jet events: Signature of axigluons in \(p\bar{p}\) collisions. Phys. Lett. B 200, 211 (1988) ADSCrossRefGoogle Scholar
  258. 258.
    C.T. Hill, S.J. Parke, Top production: Sensitivity to new physics. Phys. Rev. D 49, 4454–4462 (1994). arXiv:hep-ph/9312324 ADSCrossRefGoogle Scholar
  259. 259.
    R.M. Harris, C.T. Hill, S.J. Parke, Cross section for topcolor Z′(t) decaying to \(t \bar{t}\). arXiv:hep-ph/9911288, 1999
  260. 260.
    T. Aaltonen et al. (CDF), Limits on the production of narrow \(t\bar{t}\) resonances in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV} \). Phys. Rev. D 77, 051102 (2008). arXiv:0710.5335 ADSCrossRefGoogle Scholar
  261. 261.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Parton distributions and the LHC: W and Z production. Eur. Phys. J. C 14, 133–145 (2000). arXiv:hep-ph/9907231 ADSGoogle Scholar
  262. 262.
    T. Aaltonen et al. (CDF), Search for resonant \(t \bar{t}\) production in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 100, 231801 (2008). arXiv:0709.0705 ADSCrossRefGoogle Scholar
  263. 263.
    CDF, Search for resonant \(t \bar{t}\) production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). CDF Note 9844, July, 2009 Google Scholar
  264. 264.
    T. Aaltonen et al. (CDF), Search for new color-octet vector particle decaying to \(t\bar{t}\) in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Lett. B 691, 183–190 (2010). arXiv:0911.3112 ADSCrossRefGoogle Scholar
  265. 265.
    V.M. Abazov et al. (D0), Search for \(t\bar{t}\) resonances in the lepton plus jets final state in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Lett. B 668, 98–104 (2008). arXiv:0804.3664 ADSCrossRefGoogle Scholar
  266. 266.
    V.M. Abazov et al. (D0), Search for \(t\bar{t}\) resonances in the lepton + jets final state in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). DØ Note 5600 conf, 2008 Google Scholar
  267. 267.
    V.M. Abazov et al. (D0), Search for \(t\bar{t}\) resonances in the lepton + jets final state in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). DØ Note 5882 conf, 2009 Google Scholar
  268. 268.
    D. Wicke, Top BSM at D0. Nuovo Cimento B 123, 1269–1277 (2008). arXiv:0807.0188 ADSGoogle Scholar
  269. 269.
    V.M. Abazov et al. (D0), Search for scalar top admixture in the \(t\bar{t}\) lepton + jets final state at \(\sqrt{s}=1.96\ \mbox{TeV}\) in 1 fb−1 of DØ data. DØ Note 5438 Conf, 2007 Google Scholar
  270. 270.
    V.M. Abazov et al. (D0), Search for admixture of scalar top quarks in the \(t\bar{t}\) lepton + jets final state at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Lett. B 674, 4–10 (2009). arXiv:0901.1063 ADSCrossRefGoogle Scholar
  271. 271.
    CDF, Search for pair production of stop quarks mimicking top event signatures. CDF Conf. Note 9439, July, 2008 Google Scholar
  272. 272.
    G.D. Kribs, T. Plehn, M. Spannowsky, T.M.P. Tait, Four generations and Higgs physics. Phys. Rev. D 76, 075016 (2007). arXiv:0706.3718 ADSCrossRefGoogle Scholar
  273. 273.
    T. Han, H.E. Logan, B. McElrath, L.-T. Wang, Loop induced decays of the little Higgs: Hgg,γγ. Phys. Lett. B 563, 191–202 (2003). arXiv:hep-ph/0302188 ADSCrossRefGoogle Scholar
  274. 274.
    T. Aaltonen et al. (CDF), Search for heavy top-like quarks t′→Wq using lepton plus jets events in 1.96 TeV proton–antiproton collisions. Phys. Rev. Lett. 100, 161803 (2008). arXiv:0801.3877 ADSCrossRefGoogle Scholar
  275. 275.
    CDF, Search for heavy top t′→Wq in lepton plus jets events in 4.6 fb−1. CDF Conf. Note 10110, Mar. (2010) Google Scholar
  276. 276.
    D0, Search for a fourth generation t′ quark that decays to W boson + jet. D0 note 5892-CONF, July (2010) Google Scholar
  277. 277.
    D. Amidei et al. (TeV-2000 Study Group), Future electroweak physics at the Fermilab Tevatron: Report of the TeV-2000 Study Group. SLAC-REPRINT-1996-085 Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Inst. für PhysikJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Bergische UniversitätWuppertalGermany

Personalised recommendations