Skip to main content
Log in

Properties of the top quark

  • Review
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The top quark was discovered at the CDF and D0 experiments in 1995. As the partner of the bottom quark its properties within the Standard Model are fully defined. Only the mass is a free parameter. The measurement of the top quark mass and the verification of the expected properties have been an important topic of experimental top quark physics since. In this review the recent results on top quark properties obtained by the Tevatron experiments CDF and D0 are summarised. At the advent of the LHC special emphasis is given to the basic measurement methods and the dominating systematic uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  2. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  4. H. Fritzsch, M. Gell-Mann, H. Leutwyler, Advantages of the color octet gluon picture. Phys. Lett. B 47, 365 (1973)

    Article  ADS  Google Scholar 

  5. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)

    ADS  Google Scholar 

  6. K. Nakamura et al. (Particle Data Group), Review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  7. P. de Bernardis et al. (Boomerang), A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000). arXiv:astro-ph/0004404

    Article  ADS  Google Scholar 

  8. D.N. Spergel et al. (WMAP), First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003). arXiv:astro-ph/0302209

    Article  ADS  Google Scholar 

  9. P. Astier et al. (SNLS), The supernova legacy survey: Measurement of Ω M , Ω Λ and w from the first year data set. Astron. Astrophys. 447, 31–48 (2006). arXiv:astro-ph/0510447

    Article  ADS  Google Scholar 

  10. D.N. Spergel et al. (WMAP), Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377 (2007). arXiv:astro-ph/0603449

    Article  ADS  Google Scholar 

  11. F. Abe et al. (CDF), Observation of top quark production in \(\bar{p}p\) collisions. Phys. Rev. Lett. 74, 2626–2631 (1995). arXiv:hep-ex/9503002

    Article  ADS  Google Scholar 

  12. S. Abachi et al. (D0), Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995). hep-ex/9503003

    Article  ADS  Google Scholar 

  13. R.S. Chivukula, B.A. Dobrescu, H. Georgi, C.T. Hill, Top quark seesaw theory of electroweak symmetry breaking. Phys. Rev. D 59, 075003 (1999). arXiv:hep-ph/9809470

    Article  ADS  Google Scholar 

  14. B.A. Dobrescu, C.T. Hill, Electroweak symmetry breaking via top condensation seesaw. Phys. Rev. Lett. 81, 2634–2637 (1998). arXiv:hep-ph/9712319

    Article  ADS  Google Scholar 

  15. A. Quadt, Top quark physics at hadron colliders. Eur. Phys. J. C 48, 835–1000 (2006)

    Article  ADS  Google Scholar 

  16. M. Beneke et al., Top quark physics. arXiv:hep-ph/0003033

  17. W. Wagner, Top quark physics in hadron collisions. Rep. Prog. Phys. 68, 2409–2494 (2005). arXiv:hep-ph/0507207

    Article  ADS  Google Scholar 

  18. R. Kehoe, M. Narain, A. Kumar, Review of top quark physics results. Int. J. Mod. Phys. A 23, 353–470 (2008). arXiv:0712.2733

    Article  ADS  Google Scholar 

  19. R. Demina, E.J. Thomson, Top quark properties and interactions. Annu. Rev. Nucl. Part. Sci. 58, 125–146 (2008)

    Article  ADS  Google Scholar 

  20. M.-A. Pleier, Review of top quark properties measurements at the tevatron. Int. J. Mod. Phys. A 24, 2899–3037 (2009). arXiv:0810.5226

    Article  ADS  Google Scholar 

  21. W. Bernreuther, Top quark physics at the LHC. J. Phys. G 35, 083001 (2008). arXiv:0805.1333

    Article  ADS  Google Scholar 

  22. J.R. Incandela, A. Quadt, W. Wagner, D. Wicke, Status and prospects of top-quark physics. Prog. Part. Nucl. Phys. 63, 239–292 (2009). arXiv:0904.2499

    Article  ADS  Google Scholar 

  23. F. Deliot, D. Glenzinski, Top quark physics at the tevatron. arXiv:1010.1202. Submitted to Rev. Mod. Phys.

  24. CDF, A. Heinson (D0), Observation of single top quark production at the Tevatron collider. Mod. Phys. Lett. A 25, 309–339 (2010). arXiv:1002.4167

    Article  ADS  Google Scholar 

  25. Y. Fukuda et al. (Super-Kamiokande), Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). arXiv:hep-ex/9807003

    Article  ADS  Google Scholar 

  26. Q.R. Ahmad et al. (SNO), Measurement of the rate of ν e +dp+p+e interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301 (2001). arXiv:nucl-ex/0106015

    Article  ADS  Google Scholar 

  27. Q.R. Ahmad et al. (SNO), Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002). arXiv:nucl-ex/0204008

    Article  ADS  Google Scholar 

  28. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)

    Article  ADS  Google Scholar 

  29. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  30. N. Kidonakis, R. Vogt, Next-to-next-to-leading order soft-gluon corrections in top quark hadroproduction. Phys. Rev. D 68, 114014 (2003). hep-ph/0308222

    Article  ADS  Google Scholar 

  31. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, The \(t\bar{t}\) cross-section at 1.8 TeV and 1.96 TeV: A study of the systematics due to parton densities and scale dependence. J. High Energy Phys. 04, 068 (2004). hep-ph/0303085

    Article  ADS  Google Scholar 

  32. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC. J. High Energy Phys. 09, 127 (2008). arXiv:0804.2800

    Article  ADS  Google Scholar 

  33. S. Moch, P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders. Phys. Rev. D 78, 034003 (2008). arXiv:0804.1476

    Article  ADS  Google Scholar 

  34. S. Moch, P. Uwer, Heavy-quark pair production at two loops in QCD. Nucl. Phys. B, Proc. Suppl. 183, 75–80 (2008). arXiv:0807.2794

    Article  ADS  Google Scholar 

  35. N. Kidonakis, R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC. Phys. Rev. D 78, 074005 (2008). arXiv:0805.3844

    Article  ADS  Google Scholar 

  36. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 07, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  37. B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, The fully differential single top quark cross-section in next to leading order QCD. Phys. Rev. D 66, 054024 (2002). arXiv:hep-ph/0207055

    Article  ADS  Google Scholar 

  38. Z. Sullivan, Understanding single-top-quark production and jets at hadron colliders. Phys. Rev. D 70, 114012 (2004). arXiv:hep-ph/0408049

    Article  ADS  Google Scholar 

  39. N. Kidonakis, Single top production at the Tevatron: Threshold resummation and finite-order soft gluon corrections. Phys. Rev. D 74, 114012 (2006). arXiv:hep-ph/0609287

    Article  ADS  Google Scholar 

  40. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Physical gluons and high E T jets. Phys. Lett. B 604, 61–68 (2004). arXiv:hep-ph/0410230

    Article  ADS  Google Scholar 

  41. J.H. Kühn, Acta Phys. Pol. 12, 347 (1981)

    Google Scholar 

  42. http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_feynman_diagrams.html

  43. http://www-bdnew.fnal.gov/operations/rookie_books/rbooks.html

  44. http://www-d0.fnal.gov/runcoor/RUN/run2_lumi.html

  45. V. Rusu, Tevatron operation and physics. FNAL Physics Advisory Commitee, http://www.fnal.gov/directorate/program_planning/Mar2009PACPublic/PACMarch09AgendaPublic.htm, March, 2009

  46. F. Abe et al. (CDF), The CDF detector: an overview. Nucl. Instrum. Methods A 271, 387–403 (1988)

    Article  ADS  Google Scholar 

  47. R. Blair et al. (CDF-II), The CDF-II detector: Technical design report. FERMILAB-PUB-96-390-E, 1996

  48. D.E. Acosta et al. (CDF), Measurement of the J/ψ meson and b-hadron production cross sections in \(p\bar{p}\) collisions at \(\sqrt{s} = 1960\) GeV. Phys. Rev. D 71, 032001 (2005). arXiv:hep-ex/0412071

    Article  ADS  Google Scholar 

  49. A. Sill (CDF), CDF Run II silicon tracking projects. Nucl. Instrum. Methods A 447, 1–8 (2000)

    Article  ADS  Google Scholar 

  50. A. Bardi et al., The CDF online silicon vertex tracker. Nucl. Instrum. Methods A 485, 178–182 (2002)

    Article  ADS  Google Scholar 

  51. A.A. Affolder et al. (CDF), Intermediate silicon layers detector for the CDF experiment. Nucl. Instrum. Methods A 453, 84–88 (2000)

    Article  ADS  Google Scholar 

  52. D. Acosta et al. (CDF-II), A time-of-flight detector in CDF-II. Nucl. Instrum. Methods A 518, 605–608 (2004)

    Article  ADS  Google Scholar 

  53. S. Abachi et al. (D0), The D0 detector. Nucl. Instrum. Methods A 338, 185–253 (1994)

    Article  ADS  Google Scholar 

  54. V.M. Abazov et al. (D0), The upgraded D0 detector. Nucl. Instrum. Methods A 565, 463–537 (2006). arXiv:physics/0507191

    Article  ADS  Google Scholar 

  55. A. Heinson, http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_dzero_detector.html

  56. V.M. Abazov et al. (D0), Measurement of the \(t \bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s}= 1.96\ \mbox{TeV}\) using kinematic characteristics of lepton + jets events. Phys. Rev. D 76, 092007 (2007). arXiv:0705.2788

    Article  ADS  Google Scholar 

  57. A. Abulencia et al. (CDF), Measurement of the \(t \bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\) using lepton + jets events with jet probability b tagging. Phys. Rev. D 74, 072006 (2006). arXiv:hep-ex/0607035

    Article  ADS  Google Scholar 

  58. G. Blazey et al., in QCD and weak boson physics in Run II, ed. by U. Baur, R.K. Ellis, D. Zeppenfeld (2000), FERMILAB-PUB-00-297

    Google Scholar 

  59. D.E. Acosta et al. (CDF), Measurement of the \(t\bar{t}\) production cross section in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV using lepton plus jets events with semileptonic B decays to muons. Phys. Rev. D 72, 032002 (2005). arXiv:hep-ex/0506001

    Article  ADS  Google Scholar 

  60. T. Scanlon, b-tagging and the search for neutral supersymmetric Higgs bosons at D0. FERMILAB-THESIS-2006-43

  61. E. Laenen, Top quark in theory. arXiv:0809.3158, 2008

  62. S. Fleming, A.H. Hoang, S. Mantry, I.W. Stewart, Factorization approach for top mass reconstruction at high energies. arXiv:0710.4205, 2007

  63. A.H. Hoang, I.W. Stewart, Top mass measurements from jets and the Tevatron top-quark mass. Nucl. Phys. B, Proc. Suppl. 185, 220–226 (2008). arXiv:0808.0222

    Article  ADS  Google Scholar 

  64. DELPHI, Mass effects in the Pythia generator. DELPHI 2003-061. PHYS 932, June, 2003

  65. T. Aaltonen et al. (CDF), First simultaneous measurement of the top quark mass in the lepton + jets and dilepton channels at CDF. Phys. Rev. D 79, 092005 (2009). arXiv:0809.4808

    Article  ADS  Google Scholar 

  66. CDF, Combined template-based top quark mass measurement in the lepton + jets and dileptons channels using 2.7 fb−1 of data. CDF Note 9578, Oct., 2008

  67. CDF, Simultaneous template-based top quark mass measurement in the lepton + jets and dileptons channels including m T2. CDF Note 9679. http://www-cdf.fnal.gov/physics/new/top/2009/mass/TMT_p19_public/, Mar., 2009

  68. CDF, Combined template-based top quark mass measurement in the lepton + jets and dileptons channels using 5.6 fb−1 of data. CDF Note 10273, Aug., 2010

  69. A.A. Affolder et al. (CDF), Measurement of the \(t\bar{t}\) production cross section in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 64, 032002 (2001). arXiv:hep-ex/0101036. Phys. Rev. D 65, 039902 (2002), Erratum

    Article  ADS  Google Scholar 

  70. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 07, 001 (2003). arXiv:hep-ph/0206293

    Article  ADS  Google Scholar 

  71. T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175

    Article  ADS  Google Scholar 

  72. M. Sandhoff, P. Skands, Colour annealing: A toy model of colour reconnections. FERMILAB-CONF-05-518-T, in Les Houches ‘Physics at TeV Colliders’ (2005) SM and Higgs Working Group: Summary report, hep-ph/0604120, 2005

  73. P. Skands, D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron. Eur. Phys. J. C 52, 133–140 (2007). hep-ph/0703081

    Article  ADS  Google Scholar 

  74. D. Wicke, P.Z. Skands, Non-perturbative QCD effects and the top mass at the Tevatron. Nuovo Cimento 123B, 1–8 (2008). arXiv:0807.3248

    ADS  Google Scholar 

  75. D0, Measurement of the top quark mass in the lepton + jets channel using DØ Run II data. D0 note 4574-CONF, August, 2004

  76. D0, Measurement of the top quark mass in the lepton + jets channel using DØ Run II data: The low bias template method. D0 note 4728-CONF, 2005

  77. P. Abreu et al. (DELPHI), Measurement of the W pair cross-section and of the W mass in e + e interactions at 172 GeV. Eur. Phys. J. C 2, 581–595 (1998)

    Article  ADS  Google Scholar 

  78. P. Abreu et al. (DELPHI), Measurement of the mass of the W boson using direct reconstruction at \(\sqrt{s} = 183\ \mbox{GeV}\). Phys. Lett. B 462, 410–424 (1999)

    Article  ADS  Google Scholar 

  79. V.M. Abazov et al. (D0), Measurement of the top quark mass in the lepton + jets channel using the ideogram method. Phys. Rev. D 75, 092001 (2007). arXiv:hep-ex/0702018

    Article  ADS  Google Scholar 

  80. V.M. Abazov et al. (D0), Measurement of the \(t\bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\) using kinematic characteristics of lepton + jets events. Phys. Lett. B 626, 45–54 (2005). arXiv:hep-ex/0504043

    Article  ADS  Google Scholar 

  81. Y. Peters, K. Hamacher, D. Wicke (D0), Precise tuning of the b fragmentation for the D0 Monte Carlo. FERMILAB-TM-2425-E, D0 Note 5229

  82. V.M. Abazov et al. (D0), A precision measurement of the mass of the top quark. Nature 429, 638–642 (2004). arXiv:hep-ex/0406031

    Article  ADS  Google Scholar 

  83. K. Kondo, T. Chikamatsu, S.H. Kim, Dynamical likelihood method for reconstruction of events with missing momentum. 3: Analysis of a CDF high p T event as \(t\bar{t}\) production. J. Phys. Soc. Jpn. 62, 1177–1182 (1993)

    Article  ADS  Google Scholar 

  84. R.H. Dalitz, G.R. Goldstein, Test of analysis method for top-antitop production and decay events. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 455, 2803–2834 (1999). arXiv:hep-ph/9802249

    Article  ADS  Google Scholar 

  85. D0, Measurement of the top quark mass in the lepton + jets final state with the matrix element method. Phys. Rev. D 74, 092005 (2006). hep-ex/0609053

    Article  ADS  Google Scholar 

  86. V.M. Abazov et al. (D0), Precise measurement of the top quark mass from lepton + jets events at D0. Phys. Rev. Lett. 101, 182001 (2008). arXiv:0807.2141

    Article  ADS  Google Scholar 

  87. D0, Measurement of the top quark mass in the lepton + jets channel using the matrix element method in 2.2 fb−1 of DØRun II data. D0 note 5750-CONF, July, 2008

  88. D0, Measurement of the top quark mass in the lepton + jets channel using the matrix element method in 3.6 fb−1 of DØRun II data. D0 note 5877-CONF, March, 2009

  89. L. Lyons, D. Gibaut, P. Clifford, How to combine correlated estimates of a single physical quantity. Nucl. Instrum. Methods A 270, 110 (1988)

    Article  ADS  Google Scholar 

  90. The Tevatron Electroweak Working Group for the CDF and D0 Collaborations, Combination of CDF and D0 results on the mass of the top quark. arXiv:1007.3178, 2010

  91. A. Abulencia et al. (CDF), Precise measurement of the top quark mass in the lepton + jets topology at CDF II. Phys. Rev. Lett. 99, 182002 (2007). arXiv:hep-ex/0703045

    Article  ADS  Google Scholar 

  92. CDF, Top mass measurement using matrix element method and lepton + jets channel. CDF Conf. Note 9725, Apr., 2009

  93. A. Abulencia et al. (CDF), Measurement of the top quark mass with the dynamical likelihood method using lepton plus jets events with b-tags in \(p\bar{p}\) collisions at \(\sqrt{s} =1.96\ \mbox{TeV}\). Phys. Rev. D 73, 092002 (2006). hep-ex/0512009

    Article  ADS  Google Scholar 

  94. CDF, Top quark mass measurement using the dynamical likelihood template medhod in the lepton plus jets channel at CDF Run II. CDF Note 9135, Dec., 2007

  95. CDF, Top mass measurement in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration and in situ jet calibration with 2.7 fb−1. CDF Conf. Note 9427, July, 2008

  96. CDF, Top mass measurement in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration and in situ jet calibration with 3.2 fb−1. CDF Conf. Note 9692, Feb., 2009

  97. T. Aaltonen et al. (CDF), Top quark mass measurement in the lepton plus jets channel using a modified matrix element method. Phys. Rev. D 79, 072001 (2009). arXiv:0812.4469

    Article  ADS  Google Scholar 

  98. CDF, Top mass measurement in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration and in situ jet calibration with 5.6 fb−1. CDF Conf. Note 10191, June, 2010

  99. T. Aaltonen et al. (CDF), Top quark mass measurement in the lepton + jets channel using a matrix element method and in situ jet energy calibration. Phys. Rev. Lett. 105, 252001 (2010). arXiv:1010.4582

    Article  ADS  Google Scholar 

  100. R. Kleiss, W.J. Stirling, Top quark production at hadron colliders: Some useful formulae. Z. Phys. C 40, 419–423 (1988)

    Article  ADS  Google Scholar 

  101. A. Abulencia et al. (CDF, Run II), Measurement of the top quark mass in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\) using the decay length technique. Phys. Rev. D 75, 071102 (2007). arXiv:hep-ex/0612061

    Article  ADS  Google Scholar 

  102. T. Aaltonen et al. (CDF), Measurements of the top-quark mass using charged particle tracking. Phys. Rev. D 81, 032002 (2010). arXiv:0910.0969

    Article  ADS  Google Scholar 

  103. CDF, Measurement of the top quark mass with 2.7 fb−1 of CDF RunII data in the lepton + jets channel using only leptons. CDF Note 9683, July, 2009

  104. CDF, Measurement of the top quark mass from the lepton p T in the \(t\bar{t}\rightarrow{}\) dilepton channel using b-tagging at 2.8 fb−1. CDF Note 9831, July, 2009

  105. CDF, Lepton + jets and dilepton combined measurement of the top quark mass from the leptons’ p T using b-tagging at 2.8 fb−1. CDF Note 9881, Aug., 2009

  106. T. Aaltonen et al. (CDF), Measurement of the top quark mass at CDF using the ‘neutrino φ weighting’ template method on a lepton plus isolated track sample. Phys. Rev. D 79, 072005 (2009). arXiv:0901.3773

    Article  ADS  Google Scholar 

  107. G. Corcella et al., HERWIG 6.5: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 01, 010 (2001). arXiv:hep-ph/0011363

    Article  ADS  Google Scholar 

  108. D0, Measurement of the top quark mass in dilepton final states via neutrino weighting. D0 note 5746-CONF, July, 2008

  109. V.M. Abazov et al. (D0), Measurement of the top quark mass in final states with two leptons. Phys. Rev. D 80, 092006 (2009). arXiv:0904.3195

    Article  ADS  Google Scholar 

  110. V.M. Abazov et al. (D0), Measurement of the top quark mass in the dilepton channel. Phys. Lett. B 655, 7 (2007). arXiv:hep-ex/0609056

    Article  ADS  Google Scholar 

  111. R.H. Dalitz, G.R. Goldstein, The decay and polarization properties of the top quark. Phys. Rev. D 45, 1531–1543 (1992)

    Article  ADS  Google Scholar 

  112. D0, Measurement of the top quark mass in the dilepton channel using the matrix weigthing method at DØ. D0 note 5463-CONF, Aug., 2007

  113. D0, Measurement of the mass of the top quark in +jets final states at DØ with 5.3 fb−1. D0 note 6104-CONF, Aug., 2010

  114. A. Abulencia et al. (CDF), Top quark mass measurement from dilepton events at cdf ii. Phys. Rev. Lett. 96, 152002 (2006). hep-ex/0512070

    Article  ADS  Google Scholar 

  115. A. Abulencia et al. (CDF), Top quark mass measurement from dilepton events at CDF II with the matrix-element method. Phys. Rev. D 74, 032009 (2006). hep-ex/0605118

    Article  ADS  Google Scholar 

  116. CDF, Measurement of the top quark mass in the dilepton channel using a matrix element method with 1.8 fb−1. CDF Note 8951, Aug., 2007

  117. D0, Measurement of the top quark mass in the electron-muon channel using the matrix element method with 3.6 fb−1. D0 note 5897-CONF, Mar., 2009

  118. V.M. Abazov et al. (D0), Measurement of the top quark mass in all-jet events. Phys. Lett. B 606, 25–33 (2005). hep-ex/0410086

    Article  ADS  Google Scholar 

  119. T. Aaltonen et al. (The CDF), Measurement of the top quark mass and \(p\bar{p}\)\(t\bar{t}\) cross section in the all-hadronic mode with the CDFII detector. Phys. Rev. D 81, 052011 (2010). arXiv:1002.0365

    Article  ADS  Google Scholar 

  120. R.D. Field (CDF), The underlying event in hard scattering processes. arXiv:hep-ph/0201192, CDF Note 6403; further recent talks available from webpage http://www.phys.ufl.edu/~rfield/cdf/, 2002

  121. T. Aaltonen et al. (CDF), Measurement of the top-quark mass in all-hadronic decays in p anti-p collisions at CDF II. Phys. Rev. Lett. 98, 142001 (2007). arXiv:hep-ex/0612026

    Article  ADS  Google Scholar 

  122. CDF, Measurement of the top quark mass with in situ jet energy calibration in the all-hadronic channel using the ideogram method with 1.9 fb−1. CDF Note 9265, Mar., 2008

  123. V.M. Abazov et al. (D0), Top quark mass extraction from \(t\bar{t}\) cross section measurements. DØ Note 5742 conf, 2008

  124. V.M. Abazov et al. (D0), Measurement of the \(t \bar{t}\) production cross section in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 100, 192004 (2008). arXiv:0803.2779

    Article  ADS  Google Scholar 

  125. V.M. Abazov et al. (D0), Measurement of the ttbar production cross section and top quark mass extraction using dilepton events in ppbar collisions. Phys. Lett. B 679, 177–185 (2009). arXiv:0901.2137

    Article  ADS  Google Scholar 

  126. V.M. Abazov et al. (D0), Combination of \(t\bar{t}\) cross section measurements and constraints on the mass of the top quark and its decays into charged Higgs bosons. Phys. Rev. D 80, 071102 (2009). arXiv:0903.5525

    Article  ADS  Google Scholar 

  127. W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith, QCD corrections to heavy quark production in p anti-p collisions. Phys. Rev. D 40, 54–82 (1989)

    Article  ADS  Google Scholar 

  128. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007

    Article  ADS  Google Scholar 

  129. U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass. Phys. Rev. D 80, 054009 (2009). arXiv:0906.5273

    Article  ADS  Google Scholar 

  130. J. Rathsman, A generalised area law for hadronic string reinteractions. Phys. Lett. B 452, 364–371 (1999). hep-ph/9812423

    Article  ADS  Google Scholar 

  131. B.R. Webber, Colour reconnection and Bose-Einstein effects. J. Phys. G 24, 287–296 (1998). arXiv:hep-ph/9708463

    Article  ADS  Google Scholar 

  132. A.B. Galtieri, MC4LHC Readiness Workshop, CERN http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=74601, March, 2010

  133. D.E. Acosta et al. (CDF), Study of jet shapes in inclusive jet production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Rev. D 71, 112002 (2005). arXiv:hep-ex/0505013

    Article  ADS  Google Scholar 

  134. F. Fiedler, Independent measurement of the top quark mass and the light- and bottom-jet energy scales at hadron colliders. Eur. Phys. J. C 53, 41–48 (2008). arXiv:0706.1640

    Article  ADS  Google Scholar 

  135. F. Fiedler, A. Grohsjean, P. Haefner, P. Schieferdecker, The matrix element method and its application to measurements of the top quark mass. Nucl. Instrum. Methods A 624, 203–218 (2010). arXiv:1003.1316

    Article  ADS  Google Scholar 

  136. V.M. Abazov (D0) et al., Direct measurement of the mass difference between top and antitop quarks. Phys. Rev. Lett. 103, 132001 (2009). arXiv:0906.1172

    Article  ADS  Google Scholar 

  137. CDF, Measurement of top quark and anti-top quark mass difference in the lepton + jets channel. CDF Note 10173, June, 2010

  138. LEP Electorweak Working Group, A combination of preliminary electroweak measurements and constraints on the standard model. LEPEWWG/94-02, ALEPH 94-121 PHYSIC 94-105, DELPHI 94-110 PHYS 427, L3 Note 1631, Opal TN245, July, 1994

  139. The ALEPH, DELPHI, L3, OPAL, SLD Collaboration, The LEP Electroweak Working Group, The SLD Electroweak Heavy Flavour Groups, Precision electroweak measurements on the Z resonance. Phys. Rep. 427, 257 (2006). arXiv:hep-ex/0509008

    ADS  Google Scholar 

  140. G. Aad et al. (Atlas), Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \(\sqrt{s}=7\ \mbox{TeV}\). arXiv:1012.1792

  141. V. Khachatryan et al. (CMS), First measurement of the cross section for top-quark pair production in proton–proton collisions at sqrt(s)=7 TeV. Phys. Lett. B 695, 424–443 (2011). arXiv:1010.5994

    Article  Google Scholar 

  142. ATLAS, ATLAS: detector and physics performance technical design report. Vol. 2. CERN-LHCC-99-15

  143. G.L. Bayatian et al. (CMS), CMS technical design report, volume II: Physics performance. J. Phys. G 34, 995–1579 (2007). CERN-LHCC-2006-021, CMS-TDR-008-2

    Article  Google Scholar 

  144. G. Aad et al. (ATLAS), Expected performance of the ATLAS experiment—detector, trigger and physics. arXiv:0901.0512

  145. A. Kharchilava, Top mass determination in leptonic final states with J/ψ. Phys. Lett. B 476, 73–78 (2000). arXiv:hep-ph/9912320

    Article  ADS  Google Scholar 

  146. R. Chierici, A. Dierlamm, Determination of the top mass with exclusive events tWblνJ/ψX. CERN-CMS-NOTE-2006-058, 2006

  147. A.H. Hoang, I.W. Stewart, Top-mass measurements from jets and the Tevatron top mass. Nuovo Cimento B 123, 1092–1100 (2008)

    ADS  Google Scholar 

  148. A. Abulencia et al. (CDF), Search for V+A current in top quark decay in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 98, 072001 (2007). arXiv:hep-ex/0608062

    Article  ADS  Google Scholar 

  149. T. Aaltonen et al. (CDF), Measurement of W-boson helicity fractions in top-quark decays using cos θ . Phys. Lett. B 674, 160–167 (2009). arXiv:0811.0344

    Article  ADS  Google Scholar 

  150. CDF, W boson helicity measurement in \(t\bar{t}\) dilepton channel at cdf. CDF Conf. Note 10333, Nov., 2010

  151. J. Alwall et al., MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 09, 028 (2007). arXiv:0706.2334

    Article  ADS  Google Scholar 

  152. CDF, Measurements of W boson fractions in top quark decay to lepton + jets events using a matrix element analysis technique with 1.9 fb−1 of data. CDF Conf. Note 9144, Dec., 2007

  153. CDF, Measurements of W boson fractions in top quark decay to lepton + jets events using a matrix element analysis technique with 2.7 fb−1 of data. CDF Conf. Note 10004, Nov., 2009

  154. V.M. Abazov et al. (D0), Measurement of the W boson helicity in top quark decay at D0. Phys. Rev. D 75, 031102 (2007). arXiv:hep-ex/0609045

    Article  ADS  Google Scholar 

  155. V.M. Abazov et al. (D0), Measurement of the W boson helicity in top quark decays using 5.4fb−1 of \(p\bar{p}\) collision data. Phys. Rev. D 83, 032009 (2011). arXiv:1011.6549

    Article  ADS  Google Scholar 

  156. J. Alwall et al., Is V tb ≃1? Eur. Phys. J. C 49, 791–801 (2007). arXiv:hep-ph/0607115

    Article  ADS  Google Scholar 

  157. V.M. Abazov et al. (D0), Observation of single top-quark production. Phys. Rev. Lett. 103, 092001 (2009). arXiv:0903.0850

    Article  ADS  Google Scholar 

  158. T. Aaltonen et al. (CDF), First observation of electroweak single top quark production. Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885

    Article  ADS  Google Scholar 

  159. CDF, D0, T. E. W. Group, Combination of CDF and D0 measurements of the single top production cross section. arXiv:0908.2171

  160. D. Acosta et al. (CDF), Measurement of B(tWb)/B(tWq) at the Collider Detector at Fermilab. Phys. Rev. Lett. 95, 102002 (2005). hep-ex/0505091

    Article  ADS  Google Scholar 

  161. G.J. Feldman, R.D. Cousins, A unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873–3889 (1998). arXiv:physics/9711021

    Article  ADS  Google Scholar 

  162. V.M. Abazov et al. (D0), Simultaneous measurement of the ratio \(\mathcal{B}(t\to Wb) /\mathcal{B}(t\to Wq)\) and the top quark pair production cross section with the D0 detector at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 100, 192003 (2008). arXiv:0801.1326

    Article  ADS  Google Scholar 

  163. S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)

    Article  ADS  Google Scholar 

  164. J.L. Diaz-Cruz, R. Martinez, M.A. Perez, A. Rosado, Flavor changing radiative decay of THF t quark. Phys. Rev. D 41, 891–894 (1990)

    Article  ADS  Google Scholar 

  165. G. Eilam, J.L. Hewett, A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models. Phys. Rev. D 44, 1473–1484 (1991). Phys. Rev. D 59 039901 (1999), Erratum

    Article  ADS  Google Scholar 

  166. B. Mele, S. Petrarca, A. Soddu, A new evaluation of the tc H decay width in the standard model. Phys. Lett. B 435, 401–406 (1998). arXiv:hep-ph/9805498

    Article  ADS  Google Scholar 

  167. H. Fritzsch, t quarks may decay into Z bosons and charm. Phys. Lett. B 224, 423 (1989)

    Article  ADS  Google Scholar 

  168. J.A. Aguilar-Saavedra, Top flavour-changing neutral interactions: Theoretical expectations and experimental detection. Acta Phys. Pol. A 35, 2695–2710 (2004). arXiv:hep-ph/0409342

    ADS  Google Scholar 

  169. T. Aaltonen et al. (CDF), Search for the flavor changing neutral current decay tZq in \(p \bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Rev. Lett. 101, 192002 (2008). arXiv:0805.2109

    Article  ADS  Google Scholar 

  170. T. Aaltonen et al. (CDF), Search for top-quark production via flavor-changing neutral currents in W+1 jet events at CDF. Phys. Rev. Lett. 102, 151801 (2009). arXiv:0812.3400

    Article  ADS  Google Scholar 

  171. V.M. Abazov et al. (D0), Search for production of single top quarks via flavor-changing neutral currents at the Tevatron. Phys. Rev. Lett. 99, 191802 (2007). arXiv:hep-ex/0702005

    Article  ADS  Google Scholar 

  172. V.M. Abazov et al. (D0), Search for flavor changing neutral currents via quark-gluon couplings in single top quark production using 2.3 fb−1 of \(p\bar{p}\) collisions. Phys. Lett. B 693, 81–87 (2010). arXiv:1006.3575

    Article  ADS  Google Scholar 

  173. A. Heister et al. (ALEPH), Search for single top production in e + e collisions at \(\sqrt{s}\) up to 209 GeV. Phys. Lett. B 543, 173–182 (2002). arXiv:hep-ex/0206070

    Article  ADS  Google Scholar 

  174. J. Abdallah, et al. (DELPHI), Search for single top production via FCNC at LEP at \(\sqrt{s} = 189\ \mbox{GeV}\mbox{--}208\ \mbox{GeV}\). Phys. Lett. B 590, 21–34 (2004). arXiv:hep-ex/0404014

    Article  ADS  Google Scholar 

  175. P. Achard et al. (L3), Search for single top production at LEP. Phys. Lett. B 549, 290–300 (2002). arXiv:hep-ex/0210041

    Article  ADS  Google Scholar 

  176. G. Abbiendi et al. (OPAL), Search for single top quark production at LEP2. Phys. Lett. B 521, 181–194 (2001). arXiv:hep-ex/0110009

    Article  ADS  Google Scholar 

  177. S. Chekanov et al. (ZEUS), Search for single-top production in ep collisions at HERA. Phys. Lett. B 559, 153–170 (2003). arXiv:hep-ex/0302010

    Article  ADS  Google Scholar 

  178. A. Aktas et al. (H1), Search for single top quark production in ep collisions at HERA. Eur. Phys. J. C 33, 9–22 (2004). arXiv:hep-ex/0310032

    Article  Google Scholar 

  179. H1, Search for single top quark production in ep collisions at HERA. Contributed paper to EPS2007, abstract 776, H1prelim-07-163, 2007

  180. F.D. Aaron et al. (H1), Search for single top quark production at HERA. arXiv:0904.3876

  181. F. Abe et al. (CDF), Search for flavor-changing neutral current decays of the top quark in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.8\ \mbox{TeV}\). Phys. Rev. Lett. 80, 2525–2530 (1998)

    Article  ADS  Google Scholar 

  182. T. Stelzer, W.F. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81, 357–371 (1994). arXiv:hep-ph/9401258

    Article  ADS  Google Scholar 

  183. F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 02, 027 (2003). arXiv:hep-ph/0208156

    Article  ADS  Google Scholar 

  184. S.R. Slabospitsky, L. Sonnenschein, TopReX generator (version 3.25): Short manual. Comput. Phys. Commun. 148, 87–102 (2002). arXiv:hep-ph/0201292

    Article  ADS  Google Scholar 

  185. CDF, Combination of CDF single top searches with 2.2 fb−1 of data. CDF Note 9251, Mar., 2008

  186. J.J. Liu, C.S. Li, L.L. Yang, L.G. Jin, Next-to-leading order QCD corrections to the direct top quark production via model-independent FCNC couplings at hadron colliders. Phys. Rev. D 72, 074018 (2005). arXiv:hep-ph/0508016

    Article  ADS  Google Scholar 

  187. L.L. Yang, C.S. Li, Y. Gao, J.J. Liu, Threshold resummation effects in direct top quark production at hadron colliders. Phys. Rev. D 73, 074017 (2006). arXiv:hep-ph/0601180

    Article  ADS  Google Scholar 

  188. V.M. Abazov et al. (D0), Multivariate searches for single top quark production with the D0 detector. Phys. Rev. D 75, 092007 (2007). arXiv:hep-ex/0604020

    Article  ADS  Google Scholar 

  189. V.M. Abazov et al. (D0), Evidence for production of single top quarks. Phys. Rev. D 78, 012005 (2008). arXiv:0803.0739

    Article  ADS  Google Scholar 

  190. V.M. Abazov et al. (D0), Measurement of the t-channel single top quark production cross section. Phys. Lett. B 682, 363–369 (2010). arXiv:0907.4259

    Article  ADS  Google Scholar 

  191. E.E. Boos, V.E. Bunichev, L.V. Dudko, V.I. Savrin, A.V. Sherstnev, Method for simulating electroweak top-quark production events in the NLO approximation: SingleTop event generator. Phys. At. Nucl. 69, 1317–1329 (2006)

    Article  Google Scholar 

  192. E. Boos et al. (CompHEP), CompHEP 4.4: Automatic computations from Lagrangians to events. Nucl. Instrum. Methods A 534, 250–259 (2004). arXiv:hep-ph/0403113

    Article  ADS  Google Scholar 

  193. V.M. Abazov et al. (D0), Experimental discrimination between charge 2e/3 top quark and charge 4e/3 exotic quark production scenarios. Phys. Rev. Lett. 98, 041801 (2007). arXiv:hep-ex/0608044

    Article  ADS  Google Scholar 

  194. D0, Clarification on the D0 measurement of the top quark charge. http://www-d0.fnal.gov/Run2Physics/WWW/results/final/TOP/T06D/extra/topQ.htm, April, 2007

  195. CDF, First CDF measurement of the top quark charge using the top decay products. CDF Note 8967, Aug., 2007

  196. CDF, Exclusion of exotic top-like quark with −4/3 electric charge using soft lepton tags. CDF Note 9939, Jan., 2010

  197. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152–155 (2001)

    Article  ADS  Google Scholar 

  198. T. Aaltonen et al. (CDF), Searching the inclusive b-quark signature for radiative top quark decay and non-standard-model processes. Phys. Rev. D 80, 011102 (2009). arXiv:0906.0518

    Article  ADS  Google Scholar 

  199. I.I.Y. Bigi, Y.L. Dokshitzer, V.A. Khoze, J.H. Kühn, P.M. Zerwas, Production and decay properties of ultraheavy quarks. Phys. Lett. B 181, 157 (1986)

    Article  ADS  Google Scholar 

  200. V.D. Barger, J. Ohnemus, R.J.N. Phillips, Spin correlation effects in the hadroproduction and decay of very heavy top quark pairs. Int. J. Mod. Phys. A 4, 617 (1989)

    Article  ADS  Google Scholar 

  201. T. Stelzer, S. Willenbrock, Spin correlation in top quark production at hadron colliders. Phys. Lett. B 374, 169–172 (1996). arXiv:hep-ph/9512292

    Article  ADS  Google Scholar 

  202. W. Bernreuther, A. Brandenburg, Z.G. Si, P. Uwer, Top quark spin correlations at hadron colliders: Predictions at next-to-leading order QCD. Phys. Rev. Lett. 87, 242002 (2001). arXiv:hep-ph/0107086

    Article  ADS  Google Scholar 

  203. W. Bernreuther, Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC. Nucl. Phys. B 837, 90–121 (2010). arXiv:1003.3926

    Article  ADS  MATH  Google Scholar 

  204. CDF, A measurement of the \(t\bar{t}\) spin correlation coefficient in 2.8 fb−1 dilepton candidates. CDF Note 9824, June, 2009

  205. V.M. Abazov et al. (D0), Spin correlations in \(t\bar{t}\) production in dilepton events. DØNote 5950 conf, July, 2009

  206. CDF, Measurement of \(t\bar{t}\) halicity fraction and spin correlation using reconstructed lepton + jets events. CDF Note 10211, Jan., 2010

  207. CDF, Measurement of \(t\bar{t}\) halicity fraction and spin correlation using reconstructed lepton + jets events. CDF Note 10211, July, 2010

  208. F. Halzen, P. Hoyer, C.S. Kim, Forward–backward asymmetry of hadroproduced heavy quarks in QCD. Phys. Lett. B 195, 74 (1987)

    Article  ADS  Google Scholar 

  209. P. Nason, S. Dawson, R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions. Nucl. Phys. B 327, 49–92 (1989). Nucl. Phys. B 335, 260 (1990), Erratum

    Article  ADS  Google Scholar 

  210. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler, J. Smith, QCD corrections to heavy quark production in hadron hadron collisions. Nucl. Phys. B 351, 507–560 (1991)

    Article  ADS  Google Scholar 

  211. J.H. Kühn, G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders. Phys. Rev. D 59, 054017 (1999). arXiv:hep-ph/9807420

    Article  ADS  Google Scholar 

  212. M.T. Bowen, S.D. Ellis, D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron. Phys. Rev. D 73, 014008 (2006). arXiv:hep-ph/0509267

    Article  ADS  Google Scholar 

  213. V.M. Abazov et al. (D0), First measurement of the forward–backward charge asymmetry in top quark pair production. Phys. Rev. Lett. 100, 142002 (2008). arXiv:0712.0851

    Article  ADS  Google Scholar 

  214. T. Aaltonen et al. (CDF), Forward–backward asymmetry in top quark production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Rev. Lett. 101, 202001 (2008). arXiv:0806.2472

    Article  ADS  Google Scholar 

  215. V.M. Abazov et al. (D0), Measurement of the forward–backward production asymmetry of t and \(\bar{t}\) quarks in \(p\bar{p}\rightarrow t\bar{t}\) events. DØ Note 6062 conf, July, 2010

  216. T. Aaltonen et al. (CDF), Evidence for a mass dependent forward–backward asymmetry in top quark pair production. arXiv:1101.0034

  217. O. Antunano, J.H. Kühn, G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders. Phys. Rev. D 77, 014003 (2008). arXiv:0709.1652

    Article  ADS  Google Scholar 

  218. S. Dittmaier, P. Uwer, S. Weinzierl, NLO QCD corrections to \(t\bar{t} +\mathrm{jet}\) production at hadron colliders. Phys. Rev. Lett. 98, 262002 (2007). arXiv:hep-ph/0703120

    Article  ADS  Google Scholar 

  219. J.M. Campbell, R.K. Ellis, An update on vector boson pair production at hadron colliders. Phys. Rev. D 60, 113006 (1999). arXiv:hep-ph/9905386

    Article  ADS  Google Scholar 

  220. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 06, 029 (2002). arXiv:hep-ph/0204244

    Article  ADS  Google Scholar 

  221. T. Aaltonen et al. (CDF), First measurement of the \(t\bar{t}\) differential cross section \({\mathrm{d}\sigma/\mathrm{d}m_{t\bar{t}}}\) in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Rev. Lett. 102, 222003 (2009). arXiv:0903.2850

    Article  ADS  Google Scholar 

  222. CDF, Measurement of the \(t\bar{t}\) differential cross section, \(\mathrm{d}\sigma/\mathrm{d}M_{t\bar{t}}\) in 2.7 fb−1 of data. Public analysis webpage http://www-cdf.fnal.gov/physics/new/top/2008/tprop/dXs_27fb/webpage/dXs27fb_Public.htm, Nov., 2008

  223. D.E. Acosta et al. (CDF), Measurement of the cross section for \(t\bar{t}\) production in \(p\bar{p}\) collisions using the kinematics of lepton + jets events. Phys. Rev. D 72, 052003 (2005). arXiv:hep-ex/0504053

    Article  ADS  Google Scholar 

  224. A. Hocker, V. Kartvelishvili, SVD approach to data unfolding. Nucl. Instrum. Methods A 372, 469–481 (1996). arXiv:hep-ph/9509307

    Article  ADS  Google Scholar 

  225. T.W. Anderson, D.A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat. 23(2), 193–212 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  226. L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999). arXiv:hep-ph/9905221

    Article  ADS  MATH  MathSciNet  Google Scholar 

  227. T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A 434, 435–443 (1999). arXiv:hep-ex/9902006

    Article  ADS  Google Scholar 

  228. A. Read, Workshop on confidence limits, CERN, Geneva, Switzerland, 17–18 Jan. 2000: Proceedings. CERN-2000-005

  229. T. Arens, L.M. Sehgal, Azimuthal correlation of charged leptons produced in \(p \bar{p} \to t\bar{t} +\). Phys. Lett. B 302, 501–506 (1993)

    Article  ADS  Google Scholar 

  230. CDF, Measurements of the gluon fusion fraction in \(t\bar{t}\) production using azimuthal correlation of charged leptons. CDF Conf. Note 9432, July, 2008

  231. T. Aaltonen et al. (CDF), Measurement of the fraction of \(t \bar{t}\) production via gluon-gluon fusion in \(p \bar{p}\) collisions at \(\sqrt{s} =\allowbreak 1.96\)-TeV. Phys. Rev. D 79, 031101 (2009). arXiv:0807.4262

    Article  ADS  Google Scholar 

  232. T. Aaltonen et al. (CDF), First measurement of the fraction of top quark pair production through gluon-gluon fusion. Phys. Rev. D 78, 111101 (2008). arXiv:0712.3273

    Article  ADS  Google Scholar 

  233. T. Aaltonen et al. (CDF), First direct bound on the total width of the top quark in \(p \bar{p}\) collisions at \(\sqrt{s}= 1.96\) TeV. Phys. Rev. Lett. 102, 042001 (2009). arXiv:0808.2167

    Article  ADS  Google Scholar 

  234. CDF, A measurement of the top quark width using the template method in the lepton plus jets channel with 4.3 fb−1. CDF Note 10035, Jan., 2010

  235. CDF, First direct limit on the top quark lifetime. CDF Note 8104, Feb., 2006

  236. V.M. Abazov et al. (D0), Determination of the width of the top quark. arXiv:1009.5686

  237. J.H. Kühn, G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks. Phys. Rev. Lett. 81, 49–52 (1998). arXiv:hep-ph/9802268

    Article  ADS  Google Scholar 

  238. Y.-k. Wang, B. Xiao, S.-h. Zhu, One-side forward–backward asymmetry in top quark pair production at CERN large hadron collider. Phys. Rev. D 82, 094011 (2010). arXiv:1008.2685

    Article  ADS  Google Scholar 

  239. B. Xiao, Y.-K. Wang, Z.-Q. Zhou, S.-h. Zhu, Edge charge asymmetry in top pair production at the LHC. arXiv:1101.2507

  240. A. Stange, S. Willenbrock, Yukawa correction to top quark production at the Tevatron. Phys. Rev. D 48, 2054–2061 (1993). arXiv:hep-ph/9302291

    Article  ADS  Google Scholar 

  241. T.-F. Feng, X.-Q. Li, J. Maalampi, The anomalous Higgs—top couplings in the MSSM. Phys. Rev. D 69, 115007 (2004). arXiv:hep-ph/0310247

    Article  ADS  Google Scholar 

  242. J.A. Aguilar-Saavedra, Light Higgs boson discovery in the Standard Model and beyond. J. High Energy Phys. 12, 033 (2006). arXiv:hep-ph/0603200

    Article  ADS  Google Scholar 

  243. D0, Search for the Standard Model Higgs boson in the \(t\bar{t}h\rightarrow t\bar{t} b\bar{b}\) channel. D0 note 5739-conf, July, 2008

  244. A. Abulencia et al. (CDF), Search for charged Higgs bosons from top quark decays in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 96, 042003 (2006). hep-ex/0510065. http://www-cdf.fnal.gov/physics/new/top/2005/ljets/charged_Higgs/Higgs/V2/HiggsAnalysis_publicV2.html

    Article  ADS  Google Scholar 

  245. S.P. Martin, A supersymmetry primer. arXiv:hep-ph/9709356

  246. T. Aaltonen et al. (CDF), Search for charged Higgs bosons in decays of top quarks in \(p-\bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 103, 101803 (2009). arXiv:0907.1269

    Article  ADS  Google Scholar 

  247. V.M. Abazov et al. (D0), Search for charged Higgs bosons in top quark decays. Phys. Lett. B 682, 278–286 (2009). arXiv:0908.1811

    Article  ADS  Google Scholar 

  248. V.M. Abazov et al. (D0), Search for charged Higgs bosons in decays of top quarks. Phys. Rev. D 80, 051107 (2009). arXiv:0906.5326

    Article  ADS  Google Scholar 

  249. V.M. Abazov et al. (D0), Search for charged Higgs bosons decaying to top and bottom quarks in \(p \bar{p}\) collisions. Phys. Rev. Lett. 102, 191802 (2009). arXiv:0807.0859

    Article  ADS  Google Scholar 

  250. E. Boos, V. Bunichev, L. Dudko, M. Perfilov, Interference between W′ and W in single-top quark production processes. Phys. Lett. B 655, 245–250 (2007). arXiv:hep-ph/0610080

    ADS  Google Scholar 

  251. V.M. Abazov et al. (D0), Search for W′ Boson resonances decaying to a top quark and a bottom quark. Phys. Rev. Lett. 100, 211803 (2008). arXiv:0803.3256

    Article  ADS  Google Scholar 

  252. Z. Sullivan, Fully differential W′ production and decay at next-to- leading order in QCD. Phys. Rev. D 66, 075011 (2002). arXiv:hep-ph/0207290

    Article  ADS  Google Scholar 

  253. T. Aaltonen et al. (CDF), Search for the production of narrow tb resonances in 1.9 fb−1 of ppbar collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 103, 041801 (2009). arXiv:0902.3276

    Article  ADS  Google Scholar 

  254. A. Leike, The phenomenology of extra neutral gauge bosons. Phys. Rep. 317, 143 (1999). arXiv:hep-ph/9805494

    Article  ADS  Google Scholar 

  255. B. Lillie, L. Randall, L.-T. Wang, The bulk RS KK-gluon at the LHC. J. High Energy Phys. 09, 074 (2007). arXiv:hep-ph/0701166

    Article  ADS  Google Scholar 

  256. T.G. Rizzo, Testing the nature of Kaluza-Klein excitations at future lepton colliders. Phys. Rev. D 61, 055005 (2000). arXiv:hep-ph/9909232

    Article  ADS  Google Scholar 

  257. L.M. Sehgal, M. Wanninger, Forward–backward asymmetry in two jet events: Signature of axigluons in \(p\bar{p}\) collisions. Phys. Lett. B 200, 211 (1988)

    Article  ADS  Google Scholar 

  258. C.T. Hill, S.J. Parke, Top production: Sensitivity to new physics. Phys. Rev. D 49, 4454–4462 (1994). arXiv:hep-ph/9312324

    Article  ADS  Google Scholar 

  259. R.M. Harris, C.T. Hill, S.J. Parke, Cross section for topcolor Z′(t) decaying to \(t \bar{t}\). arXiv:hep-ph/9911288, 1999

  260. T. Aaltonen et al. (CDF), Limits on the production of narrow \(t\bar{t}\) resonances in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV} \). Phys. Rev. D 77, 051102 (2008). arXiv:0710.5335

    Article  ADS  Google Scholar 

  261. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Parton distributions and the LHC: W and Z production. Eur. Phys. J. C 14, 133–145 (2000). arXiv:hep-ph/9907231

    ADS  Google Scholar 

  262. T. Aaltonen et al. (CDF), Search for resonant \(t \bar{t}\) production in \(p \bar{p}\) collisions at \(\sqrt{s} = 1.96\ \mbox{TeV}\). Phys. Rev. Lett. 100, 231801 (2008). arXiv:0709.0705

    Article  ADS  Google Scholar 

  263. CDF, Search for resonant \(t \bar{t}\) production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). CDF Note 9844, July, 2009

  264. T. Aaltonen et al. (CDF), Search for new color-octet vector particle decaying to \(t\bar{t}\) in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Lett. B 691, 183–190 (2010). arXiv:0911.3112

    Article  ADS  Google Scholar 

  265. V.M. Abazov et al. (D0), Search for \(t\bar{t}\) resonances in the lepton plus jets final state in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Lett. B 668, 98–104 (2008). arXiv:0804.3664

    Article  ADS  Google Scholar 

  266. V.M. Abazov et al. (D0), Search for \(t\bar{t}\) resonances in the lepton + jets final state in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). DØ Note 5600 conf, 2008

  267. V.M. Abazov et al. (D0), Search for \(t\bar{t}\) resonances in the lepton + jets final state in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\ \mbox{TeV}\). DØ Note 5882 conf, 2009

  268. D. Wicke, Top BSM at D0. Nuovo Cimento B 123, 1269–1277 (2008). arXiv:0807.0188

    ADS  Google Scholar 

  269. V.M. Abazov et al. (D0), Search for scalar top admixture in the \(t\bar{t}\) lepton + jets final state at \(\sqrt{s}=1.96\ \mbox{TeV}\) in 1 fb−1 of DØ data. DØ Note 5438 Conf, 2007

  270. V.M. Abazov et al. (D0), Search for admixture of scalar top quarks in the \(t\bar{t}\) lepton + jets final state at \(\sqrt{s}=1.96\ \mbox{TeV}\). Phys. Lett. B 674, 4–10 (2009). arXiv:0901.1063

    Article  ADS  Google Scholar 

  271. CDF, Search for pair production of stop quarks mimicking top event signatures. CDF Conf. Note 9439, July, 2008

  272. G.D. Kribs, T. Plehn, M. Spannowsky, T.M.P. Tait, Four generations and Higgs physics. Phys. Rev. D 76, 075016 (2007). arXiv:0706.3718

    Article  ADS  Google Scholar 

  273. T. Han, H.E. Logan, B. McElrath, L.-T. Wang, Loop induced decays of the little Higgs: Hgg,γγ. Phys. Lett. B 563, 191–202 (2003). arXiv:hep-ph/0302188

    Article  ADS  Google Scholar 

  274. T. Aaltonen et al. (CDF), Search for heavy top-like quarks t′→Wq using lepton plus jets events in 1.96 TeV proton–antiproton collisions. Phys. Rev. Lett. 100, 161803 (2008). arXiv:0801.3877

    Article  ADS  Google Scholar 

  275. CDF, Search for heavy top t′→Wq in lepton plus jets events in 4.6 fb−1. CDF Conf. Note 10110, Mar. (2010)

  276. D0, Search for a fourth generation t′ quark that decays to W boson + jet. D0 note 5892-CONF, July (2010)

  277. D. Amidei et al. (TeV-2000 Study Group), Future electroweak physics at the Fermilab Tevatron: Report of the TeV-2000 Study Group. SLAC-REPRINT-1996-085

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wicke, D. Properties of the top quark. Eur. Phys. J. C 71, 1627 (2011). https://doi.org/10.1140/epjc/s10052-011-1627-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1627-0

Keywords

Navigation