Skip to main content
Log in

Z′ discovery potential at the LHC in the minimal BL extension of the standard model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present the Large Hadron Collider (LHC) discovery potential in the Z′ sector of a \(U(1)_{B\mbox{--}L}\) enlarged Standard Model (that also includes three heavy Majorana neutrinos and an additional Higgs boson) for \(\sqrt{s}=7\), 10 and 14 TeV centre-of-mass (CM) energies, considering both the \(Z'_{B\mbox{--}L}\rightarrow e^{+}e^{-}\) and \(Z'_{B\mbox{--}L}\rightarrow\mu^{+}\mu^{-}\) decay channels. The comparison of the (irreducible) backgrounds with the expected backgrounds for the DØ experiment at the Tevatron validates our simulation. We propose an alternative analysis that has the potential to improve the DØ sensitivity. Electrons provide a higher sensitivity to smaller couplings at small \(Z'_{B\mbox{--}L}\) boson masses than do muons. The resolutions achievable may allow the \(Z'_{B\mbox{--}L}\) boson width to be measured at smaller masses in the case of electrons in the final state. The run of the LHC at \(\sqrt{s}=7\) TeV, assuming at most \(\int\mathcal{L} \sim1\) fb−1, will be able to give similar results to those that will be available soon at the Tevatron in the lower mass region, and to extend them for a heavier M Z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, Prog. Part. Nucl. Phys. 57, 742 (2006)

    Article  ADS  Google Scholar 

  2. G.L. Fogli et al., Phys. Rev. D 75, 053001 (2007)

    Article  ADS  Google Scholar 

  3. M. Carena, A. Daleo, B.A. Dobrescu, T.M.P. Tait, Phys. Rev. D 70, 093009 (2004)

    Article  ADS  Google Scholar 

  4. G. Cacciapaglia, C. Csaki, G. Marandella, A. Strumia, Phys. Rev. D 74, 033011 (2006)

    Article  ADS  Google Scholar 

  5. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 695, 88 (2011). arXiv:1008.2023 [hep-ex]

    Article  ADS  Google Scholar 

  6. T. Aaltonen et al. (The CDF Collaboration), arXiv:1101.4578 [hep-ex]

  7. http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/NP/N66/

  8. E.E. Jenkins, Phys. Lett. B 192, 219 (1987)

    Article  ADS  Google Scholar 

  9. W. Buchmuller, C. Greub, P. Minkowski, Phys. Lett. B 267, 395 (1991)

    Article  ADS  Google Scholar 

  10. S. Khalil, J. Phys. G 35, 055001 (2008)

    Article  MathSciNet  Google Scholar 

  11. L. Basso, A minimal extension of the Standard Model with B–L gauge symmetry. Master Thesis, Università degli Studi di Padova (2007), at http://www.hep.phys.soton.ac.uk/~l.basso/B-L_Master_Thesis.pdf

  12. P. Minkowski, Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  13. M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, ed. by P. Van Nieuwenhuizen, D. Freedman (North–Holland, Amsterdam, 1979), p. 315

    Google Scholar 

  14. T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, ed. by O. Sawadaand, A. Sugamoto (FEF, Tsukuba, 1979), p. 95

    Google Scholar 

  15. S.L. Glashow, in Quarks and Leptons, ed. by M. Lèvy et al. (Plenum, New York, 1980), p. 707

    Google Scholar 

  16. R.N. Mohapatra, G. Senjanović, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  17. L. Basso, A. Belyaev, S. Moretti, C.H. Shepherd-Themistocleous, Phys. Rev. D 80, 055030 (2009)

    Article  ADS  Google Scholar 

  18. K. Huitu, S. Khalil, H. Okada, S.K. Rai, Phys. Rev. Lett. 101, 181802 (2008)

    Article  ADS  Google Scholar 

  19. C. Coriano, A.E. Faraggi, M. Guzzi, Phys. Rev. D 78, 015012 (2008). arXiv:0802.1792 [hep-ph]

    Article  ADS  Google Scholar 

  20. W. Emam, S. Khalil, Eur. Phys. J. C 52, 625 (2007)

    Article  ADS  Google Scholar 

  21. W. Emam, P. Mine, J. Phys. G 35, 115008 (2008)

    Article  ADS  Google Scholar 

  22. E. Salvioni, G. Villadoro, F. Zwirner, J. High Energy Phys. 0911, 068 (2009)

    Article  ADS  Google Scholar 

  23. A. Freitas, Phys. Rev. D 70, 015008 (2004)

    Article  ADS  Google Scholar 

  24. L. Basso, A. Belyaev, S. Moretti, G.M. Pruna, J. High Energy Phys. 0910, 006 (2009)

    Article  ADS  Google Scholar 

  25. P. Fileviez Perez, T. Han, T. Li, Phys. Rev. D 80, 073015 (2009). arXiv:0907.4186 [hep-ph]

    Article  ADS  Google Scholar 

  26. J. Erler, P. Langacker, Phys. Lett. B 456, 68 (1999). arXiv:hep-ph/9903476

    Article  ADS  Google Scholar 

  27. T. Appelquist, B.A. Dobrescu, A.R. Hopper, Phys. Rev. D 68, 035012 (2003). arXiv:hep-ph/0212073

    Article  ADS  Google Scholar 

  28. T.G. Rizzo, in Boulder 2006, Colliders and Neutrinos (2006), pp. 537–575. arXiv:hep-ph/0610104

    Google Scholar 

  29. P. Langacker, Rev. Mod. Phys. 81, 1199 (2009). arXiv:0801.1345 [hep-ph]

    Article  ADS  Google Scholar 

  30. R. Contino, Nuovo Cimento B 123, 511 (2008). arXiv:0804.3195 [hep-ph]

    ADS  Google Scholar 

  31. A.V. Gulov, V.V. Skalozub, arXiv:0905.2596 [hep-ph]

  32. J. Erler, P. Langacker, S. Munir, E.R. Pena, J. High Energy Phys. 0908, 017 (2009). arXiv:0906.2435 [hep-ph]

    Article  ADS  Google Scholar 

  33. G.L. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007)

    Article  ADS  Google Scholar 

  34. http://indico.cern.ch/conferenceDisplay.py?confId=83135

  35. L. Basso, A. Belyaev, S. Moretti, G.M. Pruna, Phys. Rev. D 81, 095018 (2010). arXiv:1002.1939 [hep-ph]

    Article  ADS  Google Scholar 

  36. L. Basso, S. Moretti, G.M. Pruna, Phys. Rev. D 82, 055018 (2010). arXiv:1004.3039 [hep-ph]

    Article  ADS  Google Scholar 

  37. A. Pukhov, arXiv:hep-ph/0412191

  38. A.V. Semenov, arXiv:hep-ph/9608488

  39. G.L. Bayatian et al. (CMS Collaboration), Preprint CERN-LHCC-2006-001, CMS-TDR-008-1

  40. (ATLAS Collaboration), Preprint CERN-LHCC-1999-14, ATLAS-TDR-14

  41. I. Katsanos, FERMILAB-THESIS-2008-03 (2008)

  42. V. Khachatryan et al. (CMS Collaboration), arXiv:1012.5945 [hep-ex]

  43. S.I. Bityukov, N.V. Krasnikov, Nucl. Instr. Methods A 452, 518 (2000)

    Article  ADS  Google Scholar 

  44. http://durpdg.dur.ac.uk/hepdata/pdf.html

  45. A. Abulencia et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007). arXiv:hep-ex/0508029

    Article  ADS  Google Scholar 

  46. T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  47. R. Brun, F. Carminati, CERN Program Library Long Writeup W5013 (1993, unpublished), version 3.15

  48. http://www.fnal.gov/pub/now/tevlum.html

  49. http://www.fnal.gov/faw/future/state-of-lab.shtml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Basso.

Additional information

SHEP-09-19, DFTT 58/2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basso, L., Belyaev, A., Moretti, S. et al. Z′ discovery potential at the LHC in the minimal BL extension of the standard model. Eur. Phys. J. C 71, 1613 (2011). https://doi.org/10.1140/epjc/s10052-011-1613-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1613-6

Keywords

Navigation