Skip to main content
Log in

Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We demonstrate the existence of the nilpotent and absolutely anticommuting Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations for the four (3+1)-dimensional (4D) topologically massive Abelian U(1) gauge theory that is described by the coupled Lagrangian densities (which incorporate the celebrated (BF) term). The absolute anticommutativity of the (anti-) BRST symmetry transformations is ensured by the existence of a Curci–Ferrari type restriction that emerges from the superfield formalism as well as from the equations of motion which are derived from the above coupled Lagrangian densities. We show the invariance of the action from the point of view of the symmetry considerations as well as superfield formulation. We discuss, furthermore, the topological term within the framework of superfield formalism and provide the geometrical meaning of its invariance under the (anti-)BRST symmetry transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Becchi, A. Rouet, R. Stora, Phys. Lett. B 52, 344 (1974)

    Article  ADS  Google Scholar 

  2. C. Becchi, A. Rouet, R. Stora, Commun. Math. Phys. 42, 127 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. C. Becchi, A. Rouet, R. Stora, Ann. Phys. (N.Y.) 98, 287 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. I.V. Tyutin, Lebedev Institute Preprint, Report No: FIAN-39 (1975) (unpublished)

  5. A. Aurilia, Y. Takahashi, Prog. Theor. Phys. 66, 693 (1981)

    Article  ADS  Google Scholar 

  6. T.R. Govindarajan, J. Phys. G 8, L17 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  7. T.J. Allen, M.J. Bowick, A. Lahiri, Mod. Phys. Lett. A 6, 559 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. D.S. Hwang, C. Lee, J. Math. Phys. 38, 30 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. V.I. Ogievetsky, I.V. Palubarinov, Yad. Fiz. 4, 216 (1966)

    Google Scholar 

  10. V.I. Ogievetsky, I.V. Palubarinov, Sov. J. Nucl. Phys. 4, 156 (1967)

    Google Scholar 

  11. M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  12. J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  13. A. Salam, E. Sezgin (eds.), in Supergravities in Diverse Dimensions (World Scientific, Singapore, 1989)

    Google Scholar 

  14. E. Cartan, Compt. Rend. 182, 956 (1926)

    MATH  Google Scholar 

  15. E. Harikumar, R.P. Malik, M. Sivakumar, J. Phys. A, Math. Gen. 33, 7149 (2000). hep-th/0004145

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. R.P. Malik, J. Phys. A, Math. Gen. 36, 5095 (2003). hep-th/0209136

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. S. Gupta, R. Kumar, R.P. Malik, Eur. Phys. J. C 65, 311 (2010) arXiv:0905.0934 [hep-th]

    Article  MATH  ADS  Google Scholar 

  18. S. Gupta, R.P. Malik, Eur. Phys. J. C 58, 517 (2008). arXiv:0807.2306 [hep-th]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. B. Julia, G. Toulouse, J. Phys. 16, 395 (1979)

    Google Scholar 

  20. R.K. Kaul, Phys. Rev. D 18, 1127 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  21. P.K. Townsend, Phys. Lett. B 88, 97 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Hata, T. Kugo, N. Ohta, Nucl. Phys. B 178, 527 (1981)

    Article  ADS  Google Scholar 

  23. T. Kimura, Prog. Theor. Phys. 64, 357 (1980)

    Article  ADS  Google Scholar 

  24. K. Nishijima, Czechoslov. J. Phys. 46, 1 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Nakanishi, I. Ojima, Covariant Operator Formalism of Gauge Theory and Quantum Gravity (World Scientific, Singapore, 1990)

    Google Scholar 

  26. G. Curci, R. Ferrari, Phys. Lett. B 63, 91 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Lahiri, Phys. Rev. D 55, 5045 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  28. R.P. Malik, Eur. Phys. J. C 60, 457 (2009). hep-th/0702039

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. R.P. Malik, arXiv:0912.4871 [hep-th]. To appear in the Proc. of the International Workshop on “Supersymmetries and Quantum Symmetries” (SQS’09), held at BLTP, JINR, Dubna (Moscow), Russia (29 July–4 August, 2009)

  30. J. Thierry-Mieg, L. Baulieu, Nucl. Phys. B 228, 259 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  31. D.Z. Freedman, P.K. Townsend, Nucl. Phys. B 177, 282 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981)

    Article  ADS  Google Scholar 

  33. L. Bonora, P. Pasti, M. Tonin, Nuovo Cimento A 63, 353 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Weinberg, The Quantum Theory of Fields: Modern Applications, vol. 2 (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  35. P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science (Yeshiva University Press, New York, 1964)

    Google Scholar 

  36. K. Sundermeyer, Constrained Dynamics. Lecture Notes in Physics, vol. 169 (Springer, Berlin, 1982)

    MATH  Google Scholar 

  37. P. Mitra, R. Rajaraman, Ann. Phys. (N.Y.) 203, 137 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. R.P. Malik, . Ann. Phys. (N.Y.) 307, 01 (2003). hep-th/0205135

    Article  MathSciNet  ADS  Google Scholar 

  39. R.P. Malik, Phys. Lett. B 584, 210 (2004). hep-th/0311001

    Article  MathSciNet  ADS  Google Scholar 

  40. R.P. Malik, J. Phys. A, Math. Gen. 37, 5261 (2004). hep-th/0311193

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. R.P. Malik, Int. J. Mod. Phys. A 23, 3685 (2008). arXiv:0704.0064 [hep-th]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. L. Bonora, R.P. Malik, Phys. Lett. B 655, 75 (2007). arXiv:0707.3922 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  43. L. Bonora, R.P. Malik, J. Phys. A, Math. Theor. 43, 375403 (2010). arXiv:0911.4919 [hep-th]

    Article  Google Scholar 

  44. S. Gupta, R. Kumar, R.P. Malik, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Kumar, R. & Malik, R.P. Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory. Eur. Phys. J. C 70, 491–502 (2010). https://doi.org/10.1140/epjc/s10052-010-1468-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1468-2

Keywords

Navigation