Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons

Abstract

Azimuthal asymmetries in semi-inclusive production of positive (h +) and negative hadrons (h ) have been measured by scattering 160 GeV muons off longitudinally polarised deuterons at CERN. The asymmetries were decomposed in several terms according to their expected modulation in the azimuthal angle φ of the outgoing hadron. Each term receives contributions from one or several spin and transverse-momentum-dependent parton distribution and fragmentation functions. The amplitudes of all φ-modulation terms of the hadron asymmetries integrated over the kinematic variables are found to be consistent with zero within statistical errors, while the constant terms are nonzero and equal for h + and h within the statistical errors. The dependencies of the φ-modulated terms versus the Bjorken momentum fraction x, the hadron fractional momentum z, and the hadron transverse momentum \(p_{h}^{T}\) were studied. The x dependence of the constant terms for both positive and negative hadrons is in agreement with the longitudinal double-spin hadron asymmetries, measured in semi-inclusive deep-inelastic scattering. The x dependence of the sin φ-modulation term is less pronounced than that in the corresponding HERMES data. All other dependencies of the φ-modulation amplitudes are consistent with zero within the statistical errors.

References

  1. 1.

    M.J. Alguard et al. (SLAC Collaborations), Phys. Rev. Lett. 37, 1261 (1976)

    Article  ADS  Google Scholar 

  2. 2.

    G. Baum et al. (SLAC Collaborations), Phys. Rev. Lett. 51, 1135 (1983)

    Article  ADS  Google Scholar 

  3. 3.

    J. Ashman et al. (European Muon Collaboration), Phys. Lett. B 206, 364 (1988)

    Article  ADS  Google Scholar 

  4. 4.

    J. Ashman et al. (European Muon Collaboration), Nucl. Phys. B 328, 1 (1989)

    Article  ADS  Google Scholar 

  5. 5.

    B. Adeva et al. (Spin Muon Collaboration), Phys. Rev. D 58, 112001 (1998)

    Article  ADS  Google Scholar 

  6. 6.

    A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D 71, 012003 (2005). arXiv:hep-ex/0407032

    Article  ADS  Google Scholar 

  7. 7.

    A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D 75, 012007 (2007). arXiv:hep-ex/0609039

    Article  ADS  Google Scholar 

  8. 8.

    J. Yun et al. (CLAS Collaboration), Phys. Rev. C 67, 055204 (2003). arXiv:hep-ex/0212044

    Article  ADS  Google Scholar 

  9. 9.

    R. Fatemi et al. (CLAS Collaboration), Phys. Rev. Lett. 91, 222002 (2003). arXiv:nucl-ex/0306019

    Article  ADS  Google Scholar 

  10. 10.

    K.V. Dharmawardane et al. (CLAS Collaboration), Phys. Lett. B 641, 11 (2006). arXiv:nucl-ex/0605028

    Article  ADS  Google Scholar 

  11. 11.

    E.S. Ageev et al. (COMPASS Collaboration), Phys. Lett. B 612, 154 (2005). arXiv:hep-ex/0501073

    Article  ADS  Google Scholar 

  12. 12.

    V.Y. Alexakhin et al. (COMPASS Collaboration), Phys. Lett. B 647, 8 (2007). arXiv:hep-ex/0609038

    Article  ADS  Google Scholar 

  13. 13.

    M. Alekseev et al. (COMPASS Collaboration), Phys. Lett. B 680, 217 (2009). arXiv:0905.2828 [hep-ex]

    Article  ADS  Google Scholar 

  14. 14.

    M.G. Alekseev et al. (COMPASS Collaboration), Phys. Lett. B 690, 466 (2010). arXiv:1001.4654 [hep-ex]

    Article  ADS  Google Scholar 

  15. 15.

    M. Alekseev et al. (COMPASS Collaboration), Phys. Lett. B 660, 458 (2008). arXiv:0707.4077 [hep-ex]

    Article  ADS  Google Scholar 

  16. 16.

    D.W. Sivers, Phys. Rev. D 41, 83 (1990)

    Article  ADS  Google Scholar 

  17. 17.

    J.C. Collins, Nucl. Phys. B 396, 161 (1993). arXiv:hep-ph/9208213

    Article  ADS  Google Scholar 

  18. 18.

    A. Kotzinian, Nucl. Phys. B 441, 234 (1995). arXiv:hep-ph/9412283

    Article  ADS  Google Scholar 

  19. 19.

    A.M. Kotzinian, P.J. Mulders, Phys. Rev. D 54, 1229 (1996). arXiv:hep-ph/9511420

    Article  ADS  Google Scholar 

  20. 20.

    P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461, 197 (1996) [Erratum ibid. B 484, 538 (1997)]

    Article  ADS  Google Scholar 

  21. 21.

    D. Boer, P.J. Mulders, Phys. Rev. D 57, 5780 (1998)

    Article  ADS  Google Scholar 

  22. 22.

    H. Avakian, A.V. Efremov, P. Schweitzer, F. Yuan, Phys. Rev. D 81, 074035 (2010). arXiv:1001.5467 [hep-ph]

    Article  ADS  Google Scholar 

  23. 23.

    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, Phys. Rev. D 81, 034007 (2010). arXiv:0911.1744 [hep-ph]

    Article  ADS  Google Scholar 

  24. 24.

    A. Bacchetta et al., J. High Energy Phys. 0702, 093 (2007). arXiv:hep-ph/0611265

    Article  ADS  Google Scholar 

  25. 25.

    A. Bravar (Spin Muon Collaboration), Nucl. Phys. Proc. Suppl. 79, 520 (1999)

    Article  ADS  Google Scholar 

  26. 26.

    A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 84, 4047 (2000). arXiv:hep-ex/9910062

    Article  ADS  Google Scholar 

  27. 27.

    A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D 64, 097101 (2001). arXiv:hep-ex/0104005

    Article  ADS  Google Scholar 

  28. 28.

    H. Avakian et al. (CLAS Collaboration), Phys. Rev. D 69, 112004 (2004). arXiv:hep-ex/0301005

    Article  ADS  Google Scholar 

  29. 29.

    H. Avakian, L. Elouadrhiri (CLAS Collaboration), Phys. Part. Nucl. 35, S114 (2004)

    Google Scholar 

  30. 30.

    A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 94, 012002 (2005). arXiv:hep-ex/0408013

    Article  ADS  Google Scholar 

  31. 31.

    A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 103, 152002 (2009). arXiv:0906.3918 [hep-ex]

    Article  ADS  Google Scholar 

  32. 32.

    A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 693, 11 (2010). arXiv:1006.4221 [hep-ex]

    Article  ADS  Google Scholar 

  33. 33.

    V.Y. Alexakhin et al. (COMPASS Collaboration), Phys. Rev. Lett. 94, 202002 (2005). arXiv:hep-ex/0503002

    Article  ADS  Google Scholar 

  34. 34.

    E.S. Ageev et al. (COMPASS Collaboration), Nucl. Phys. B 765, 31 (2007). arXiv:hep-ex/0610068

    Article  ADS  Google Scholar 

  35. 35.

    M. Alekseev et al. (COMPASS Collaboration), Phys. Lett. B 673, 127 (2009). arXiv:0802.2160 [hep-ex]

    Article  ADS  Google Scholar 

  36. 36.

    M. Alekseev et al. (COMPASS Collaboration), Phys. Lett. B 692, 240 (2010). arXiv:1005.5609 [hep-ex]

    Article  ADS  Google Scholar 

  37. 37.

    A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 622, 14 (2005). arXiv:hep-ex/0505042

    Article  ADS  Google Scholar 

  38. 38.

    A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 562, 182 (2003). arXiv:hep-ex/0212039

    Article  ADS  Google Scholar 

  39. 39.

    H. Avakian et al. (CLAS Collaboration), arXiv:1003.4549 [hep-ex]

  40. 40.

    A. Kotzinian (COMPASS Collaboration), in Munich 2007, Deep-inelastic scattering, pp. 647–650. arXiv:0705.2402 [hep-ex]

  41. 41.

    P. Abbon et al. (COMPASS Collaboration), Nucl. Instrum. Methods A 577, 455 (2007). arXiv:hep-ex/0703049

    Article  ADS  Google Scholar 

  42. 42.

    M. Arneodo et al. (European Muon Collaboration), Z. Phys. C 34, 277 (1987)

    Article  ADS  Google Scholar 

  43. 43.

    F. Giordano, R. Lamb (On behalf of the HERMES Collaboration), AIP Conf. Proc. 1149, 423 (2009). arXiv:0901.2438 [hep-ex]

    Article  ADS  Google Scholar 

  44. 44.

    A. Bressan (COMPASS Collaboration), arXiv:0907.5511 [hep-ex]

  45. 45.

    H. Avakian et al., Phys. Rev. D 77, 014023 (2008). arXiv:0709.3253 [hep-ph]

    Article  ADS  Google Scholar 

  46. 46.

    R.N. Cahn, Phys. Lett. B 78, 269 (1978)

    Article  ADS  Google Scholar 

  47. 47.

    R.N. Cahn, Phys. Rev. D 40, 3107 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. K. Mallot.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

The COMPASS Collaboration., Alekseev, M.G., Alexakhin, V.Y. et al. Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons. Eur. Phys. J. C 70, 39–49 (2010). https://doi.org/10.1140/epjc/s10052-010-1461-9

Download citation

Keywords

  • Kinematic Variable
  • Azimuthal Asymmetry
  • Target Polarisation
  • Muon Beam
  • Double Ratio