Skip to main content
Log in

Mirror matter, mirror gravity and galactic rotational curves

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We discuss astrophysical implications of the modified gravity model in which the two matter components, ordinary and dark, couple to separate gravitational fields that mix to each other through small mass terms. There are two spin-2 eigenstates: the massless graviton, which induces universal Newtonian attraction, and the massive one, which gives rise to the Yukawa-like potential which is repulsive between the ordinary and dark bodies. As a result for distances much smaller than the Yukawa radius r m the gravitation strength between the two types of matter becomes vanishing. If r m ∼10 kpc, the typical size of a galaxy, there are interesting implications for the nature of dark matter. In particular, one can avoid the problem of the cusp that is typical for the cold dark matter halos. Interestingly, the flat shape of the rotational curves can be explained even in the case of the collisional and dissipative dark matter (as e.g. mirror matter), which cannot give the extended halos but instead must form galactic discs similarly to the visible matter. The observed rotational curves for the large, medium-size and dwarf galaxies can be nicely reproduced. We also briefly discuss possible implications for the direct search of dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Bahcall, R.M. Soneira, Astrophys. J. Suppl. 44, 73 (1980)

    Article  ADS  Google Scholar 

  2. K.G. Begeman, A.H. Broeils, R.H. Sanders, Mon. Not. R. Astron. Soc. 249, 523 (1991)

    ADS  Google Scholar 

  3. A. Burkert, Astrophys. J. 447, L25 (1995)

    Article  ADS  Google Scholar 

  4. J.F. Navarro, C.S. Frenk, S.D.M. White, Mon. Not. R. Astron. Soc. 275, 720 (1995)

    ADS  Google Scholar 

  5. J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 490, 493 (1997)

    Article  ADS  Google Scholar 

  6. B. Moore et al., Mon. Not. R. Astron. Soc. 310, 1147 (1999)

    Article  ADS  Google Scholar 

  7. B. Moore et al., Phys. Rev. D 64, 063508 (2001)

    Article  ADS  Google Scholar 

  8. P. Salucci et al., Mon. Not. R. Astron. Soc. 378, 41 (2007). arXiv:astro-ph/0703115

    Article  ADS  Google Scholar 

  9. P. Salucci, F. Walter, A. Borriello, Astron. Astrophys. 409, 53 (2003)

    Article  ADS  Google Scholar 

  10. G. Gentile et al., Astrophys. J. 634, 145 (2005)

    Article  ADS  Google Scholar 

  11. K. Spekkens, R. Giovanelli, arXiv:astro-ph/0502166

  12. P. Salucci et al., Mon. Not. R. Astron. Soc. 378, 41 (2007)

    Article  ADS  Google Scholar 

  13. I.Yu. Kobzarev, L.B. Okun, I.Ya. Pomeranchuk, Sov. J. Nucl. Phys. 3, 837 (1966)

    Google Scholar 

  14. S.G. Blinnikov, M.Yu. Khlopov, Sov. Astron. 27, 371 (1983)

    ADS  Google Scholar 

  15. R. Foot, H. Lew, R.R. Volkas, Phys. Lett. B 272, 67 (1991)

    Article  ADS  Google Scholar 

  16. T.D. Lee, C.N. Yang, Phys. Rev. 104, 254 (1956)

    Article  ADS  Google Scholar 

  17. K. Nishijima, M.H. Saffouri, Phys. Rev. Lett. 14, 205 (1964)

    Article  ADS  Google Scholar 

  18. Z. Berezhiani, Int. J. Mod. Phys. A 119, 3775 (2004)

    Article  ADS  Google Scholar 

  19. Z. Berezhiani, Through the looking-glass: Alice’s adventures in mirror world, in Ian Kogan Memorial Collection “From Fields to Strings: Circumnavigating Theoretical Physics”, ed. by M. Shifman et al., vol. 3 (World Scientific, Singapore, 2005), pp. 2147–2195. arXiv:hep-ph/0508233

    Chapter  Google Scholar 

  20. Z. Berezhiani, Eur. Phys. J. ST 163, 271 (2008)

    Google Scholar 

  21. Z. Berezhiani, AIP Conf. Proc. 878, 195 (2006). arXiv:hep-ph/0612371

    Article  ADS  Google Scholar 

  22. B. Holdom, Phys. Lett. B 166, 196 (1986)

    Article  ADS  Google Scholar 

  23. S.L. Glashow, Phys. Lett. B 167, 35 (1986)

    Article  ADS  Google Scholar 

  24. E.D. Carlson, S.L. Glashow, Phys. Lett. B 193, 168 (1987)

    Article  ADS  Google Scholar 

  25. R. Foot, H. Lew, R.R. Volkas, Mod. Phys. Lett. A 7, 2567 (1992)

    Article  ADS  Google Scholar 

  26. E.K. Akhmedov, Z. Berezhiani, G. Senjanović, Phys. Rev. Lett. 69, 3013 (1992)

    Article  ADS  Google Scholar 

  27. R. Foot, R.R. Volkas, Phys. Rev. D 52, 6595 (1995)

    Article  ADS  Google Scholar 

  28. Z. Berezhiani, R.N. Mohapatra, Phys. Rev. D 52, 6607 (1995)

    Article  ADS  Google Scholar 

  29. Z. Berezhiani, L. Bento, Phys. Rev. Lett. 96, 081801 (2006). arXiv:hep-ph/0507031

    Article  ADS  Google Scholar 

  30. Z. Berezhiani, L. Bento, Phys. Lett. B 635, 253 (2006). arXiv:hep-ph/0602227

    Article  ADS  Google Scholar 

  31. Z. Berezhiani, Eur. Phys. J. C 64, 421 (2009). arXiv:0804.2088 [hep-ph]

    Article  ADS  Google Scholar 

  32. Z. Berezhiani, Phys. Lett. B 417, 287 (1998)

    Article  ADS  Google Scholar 

  33. Z. Berezhiani, A.D. Dolgov, R.N. Mohapatra, Phys. Lett. B 375, 26 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Z. Berezhiani, D. Comelli, F.L. Villante, Phys. Lett. B 503, 362 (2001)

    Article  ADS  Google Scholar 

  35. A. Ignatiev, R.R. Volkas, Phys. Rev. D 68, 023518 (2003)

    Article  ADS  Google Scholar 

  36. Z. Berezhiani, P. Ciarcellutti, D. Comelli, F.L. Villante, Int. J. Mod. Phys. D 14, 107 (2005)

    Article  MATH  ADS  Google Scholar 

  37. Z. Berezhiani, S. Cassisi, P. Ciarcelluti, A. Pietrinferni, Astropart. Phys. 24, 495 (2006)

    Article  ADS  Google Scholar 

  38. L. Bento, Z. Berezhiani, Phys. Rev. Lett. 87, 231304 (2001)

    Article  ADS  Google Scholar 

  39. L. Bento, Z. Berezhiani, Fortsch. Phys. 50, 489 (2002)

    Article  MATH  ADS  Google Scholar 

  40. L. Bento, Z. Berezhiani, arXiv:hep-ph/0111116

  41. Z. Berezhiani, F. Nesti, L. Pilo, N. Rossi, J. High Energy Phys. 0907, 083 (2009). arXiv:0902.0144 [hep-th]

    Article  ADS  Google Scholar 

  42. Z. Berezhiani, D. Comelli, F. Nesti, L. Pilo, Phys. Rev. Lett. 99, 131101 (2007). arXiv:hep-th/0703264

    Article  ADS  Google Scholar 

  43. Z. Berezhiani, O.V. Kancheli, arXiv:0808.3181 [hep-th]

  44. C.J. Isham, A. Salam, J.A. Strathdee, Phys. Rev. F 3, 867 (1971)

    MathSciNet  ADS  Google Scholar 

  45. T. Damour, I.I. Kogan, Phys. Rev. D 66, 104024 (2002). arXiv:hep-th/0206042

    Article  MathSciNet  ADS  Google Scholar 

  46. N. Boulanger, T. Damour, L. Gualtieri, M. Henneaux, Nucl. Phys. B 597, 127 (2001). arXiv:hep-th/0007220

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. V.A. Rubakov, arXiv:hep-th/0407104

  48. Z. Berezhiani, D. Comelli, F. Nesti, L. Pilo, J. High Energy Phys. 0807, 130 (2008). arXiv:0803.1687 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  49. T. Clifton, M. Banados, C. Skordis, arXiv:1006.5619 [gr-qc]

  50. N. Rossi, Eur. Phys. J. ST 163, 291 (2008)

    Google Scholar 

  51. K.C. Freeman, Astrophys. J. 160, 811 (1970)

    Article  ADS  Google Scholar 

  52. M. Jee et al., Astrophys. J. 618, 46 (2004). arXiv:astro-ph/0409304

    Article  ADS  Google Scholar 

  53. A. Mahdavi, H. Hoekstra, A. Babul, D.D. Balam, P.L. Capak, arXiv:0706.3048 [astro-ph]

  54. Z.K. Silagadze, aa. ICFAI U. J. Phys. 2, 143 (2009). arXiv:0808.2595 [astro-ph]

    Google Scholar 

  55. R. Bernabei et al. (DAMA Collaboration), Eur. Phys. J. C 56, 333 (2008). arXiv:0804.2741 [astro-ph]

    Article  Google Scholar 

  56. R. Foot, Phys. Rev. D 78, 043529 (2008). arXiv:0804.4518 [hep-ph]

    Article  ADS  Google Scholar 

  57. Z. Berezhiani, A. Lepidi, Phys. Lett. B 681, 276 (2009). arXiv:0810.1317 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zurab Berezhiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezhiani, Z., Pilo, L. & Rossi, N. Mirror matter, mirror gravity and galactic rotational curves. Eur. Phys. J. C 70, 305–316 (2010). https://doi.org/10.1140/epjc/s10052-010-1457-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1457-5

Keywords

Navigation