Abstract
We analyse the structure of one-loop self-energy graphs for the ρ meson in real time formulation of finite temperature field theory. We find the discontinuities of these graphs across the unitary and the Landau cuts. These contributions are identified with different sources of medium modification discussed in the literature. We also calculate numerically the imaginary and the real parts of the self-energies and construct the spectral function of the ρ meson, which are compared with an earlier determination. A significant contribution arises from the unitary cut of the π ω loop, that was ignored so far in the literature.
This is a preview of subscription content, access via your institution.
References
R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)
J. Alam, S. Sarkar, P. Roy, T. Hatsuda, B. Sinha, Ann. Phys. 286, 159 (2000)
R. Arnaldi et al. (NA60 Collaboration), Eur. Phys. J. C 61, 711 (2009)
C. Gale, J.I. Kapusta, Nucl. Phys. B 357, 65 (1991)
K. Haglin, Nucl. Phys. A 584, 719 (1995)
H.A. Weldon, Phys. Rev. D 28, 2007 (1983)
H. Leutwyler, A. Smilga, Nucl. Phys. B 342, 302 (1990)
V.L. Eletsky, M. Belkacem, P.J. Ellis, J.I. Kapusta, Phys. Rev. C 64, 035202 (2001)
R. Rapp, C. Gale, Phys. Rev. C 60, 024903 (1999)
S. Jeon, P.J. Ellis, Phys. Rev. D 58, 045013 (1998)
S. Mallik, Eur. Phys. J. C 24, 143 (2002)
R.L. Kobes, G.W. Semenoff, Nucl. Phys. B 260, 714 (1985)
H. Leutwyler, Principles of chiral perturbation theory. Lectures given at the Hadrons 94 Workshop, Gramado, Brazil (1994)
J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)
J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)
G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989)
G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)
S. Mallik, S. Sarkar, Eur. Phys. J. C 25, 445 (2002)
C. Amsler et al. (Particle Data Gruop), Phys. Lett. B 667, 1 (2008)
S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
S. Weinberg, The Quantum Theory of Fields, vol. I (Cambridge University Press, Cambridge, 1995)
A. Das, Finite Temperature Field Theory (Singapore, World Scientific, 1998)
C. Bernard, A. Duncan, J. LoSecco, S. Weinberg, Phys. Rev. D 12, 792 (1975)
S. Weinberg, The Quantum Theory of Fields, vol. II (Cambridge University Press, Cambridge, 1995)
J.K. Donoghue, E. Golowich, Phys. Rev. D 49, 1513 (1994)
R.L. Mills, Propagators for Many Particle Systems (Gordon & Breach, New York, 1969)
H. Matsumoto, Y. Nakano, H. Umezawa, J. Math. Phys. 25, 3076 (1984)
L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1964)
A.J. Niemi, G.W. Semenoff, Ann. Phys. 152, 105 (1984)
P. Aurenche, T. Becherrawy, Nucl. Phys. B 379, 259 (1992)
F. Gelis, Phys. Lett. B 455, 205 (1999)
S. Mallik, S. Sarkar, Eur. Phys. J. C 61, 489 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghosh, S., Mallik, S. & Sarkar, S. Analytic structure of ρ meson propagator at finite temperature. Eur. Phys. J. C 70, 251–262 (2010). https://doi.org/10.1140/epjc/s10052-010-1446-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjc/s10052-010-1446-8
Keywords
- Spectral Function
- Vector Meson
- Chiral Perturbation Theory
- Dyson Equation
- Thermal Index