Skip to main content
Log in

The algebra of physical observables in non-linearly realized gauge theories

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We classify the physical observables in spontaneously broken non-linearly realized gauge theories in the recently proposed loopwise expansion governed by the Weak Power-Counting (WPC) and the Local Functional Equation. The latter controls the non-trivial quantum deformation of the classical non-linearly realized gauge symmetry, to all orders in the loop expansion. The Batalin–Vilkovisky (BV) formalism is used. We show that the dependence of the vertex functional on the Goldstone fields is obtained via a canonical transformation w.r.t. the BV bracket associated with the BRST symmetry of the model. We also compare the WPC with strict power-counting renormalizability in linearly realized gauge theories. In the case of the electroweak group we find that the tree-level Weinberg relation still holds if power-counting renormalizability is weakened to the WPC condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Higgs, Phys. Lett. 12, 132 (1964)

    ADS  Google Scholar 

  2. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  3. P.W. Higgs, Phys. Rev. 145, 1156 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  5. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  6. T.W.B. Kibble, Phys. Rev. 155, 1554 (1967)

    Article  ADS  Google Scholar 

  7. S.L. Glashow, Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  8. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  9. A. Salam, Weak and electromagnetic interactions, in Elementary Particle Theory. Nobel Symposium No. 8, ed. by N. Svartholm (Almqvist and Wiksell, Stockholm, 1968)

    Google Scholar 

  10. C. Grojean, New theories for the Fermi scale. arXiv:0910.4976 [hep-ph], and references therein

  11. J. Moffat, arXiv:1006.1859 [hep-ph]

  12. T. Appelquist, C.W. Bernard, Phys. Rev. D 22, 200 (1980)

    Article  ADS  Google Scholar 

  13. W. Kilian, Springer Tracts Mod. Phys. 198, 1 (2003)

    Google Scholar 

  14. G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364

    Article  ADS  Google Scholar 

  15. G. Altarelli, M.L. Mangano, Standard model physics (and more) at the LHC, in Proceedings on Electroweak Physics, Geneva, Switzerland, May 25–26, October 14–15, 1999

  16. R. Ferrari, J. High Energy Phys. 0508, 048 (2005). arXiv:hep-th/0504023

    Article  ADS  Google Scholar 

  17. D. Bettinelli, R. Ferrari, A. Quadri, J. High Energy Phys. 0703, 065 (2007). arXiv:hep-th/0701212

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Bettinelli, R. Ferrari, A. Quadri, Int. J. Mod. Phys. A 23, 211 (2008). arXiv:hep-th/0701197

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. D. Bettinelli, R. Ferrari, A. Quadri, Int. J. Theor. Phys. 46, 2560 (2007). arXiv:hep-th/0611063

    Article  MATH  Google Scholar 

  20. R. Ferrari, A. Quadri, J. High Energy Phys. 0601, 003 (2006). arXiv:hep-th/0511032

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Ferrari, A. Quadri, Int. J. Theor. Phys. 45, 2497 (2006). arXiv:hep-th/0506220

    Article  MATH  Google Scholar 

  22. D. Bettinelli, R. Ferrari, A. Quadri, Phys. Rev. D 77, 105012 (2008). arXiv:0709.0644 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Bettinelli, R. Ferrari, A. Quadri, Phys. Rev. D 77, 045021 (2008). arXiv:0705.2339 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Bettinelli, R. Ferrari, A. Quadri, Gauge dependence in the nonlinearly realized massive SU(2) gauge theory. J. Gen Lie Theory Appl. 2, 122 (2008). arXiv:0712.1410 [hep-th]

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Bettinelli, R. Ferrari, A. Quadri, Int. J. Mod. Phys. A 24, 2639 (2009). arXiv:0807.3882 [hep-ph]

    Article  MATH  ADS  Google Scholar 

  26. D. Bettinelli, R. Ferrari, A. Quadri, Acta Phys. Pol. B 41, 597 (2010). arXiv:0809.1994 [hep-th]

    Google Scholar 

  27. D. Bettinelli, R. Ferrari, A. Quadri, Phys. Rev. D 79, 125028 (2009). arXiv:0903.0281 [hep-th]

    Article  ADS  Google Scholar 

  28. R. Ferrari, J. Math. Phys. 51, 032305 (2010). arXiv:0907.0426 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  29. I.A. Batalin, G.A. Vilkovisky, Phys. Lett. B 102, 27 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  30. I.A. Batalin, G.A. Vilkovisky, Phys. Lett. B 120, 166 (1983)

    Article  ADS  Google Scholar 

  31. I.A. Batalin, G.A. Vilkovisky, Phys. Rev. D 28, 2567 (1983) [Erratum: Phys. Rev. D 30, 508 (1984)]

    Article  MathSciNet  ADS  Google Scholar 

  32. I.A. Batalin, G.A. Vilkovisky, Nucl. Phys. B 234, 106 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  33. I.A. Batalin, G.A. Vilkovisky, J. Math. Phys. 26, 172 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  34. J. Gomis, J. Paris, S. Samuel, Phys. Rep. 259, 1 (1995). arXiv:hep-th/9412228

    Article  MathSciNet  ADS  Google Scholar 

  35. G. Barnich, F. Brandt, M. Henneaux, Phys. Rep. 338, 439 (2000). arXiv:hep-th/0002245

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. G. Barnich, F. Brandt, M. Henneaux, Commun. Math. Phys. 174, 93 (1995). arXiv:hep-th/9405194

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. G. Barnich, F. Brandt, M. Henneaux, Commun. Math. Phys. 174, 57 (1995). arXiv:hep-th/9405109

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. G. Barnich, M. Henneaux, Phys. Rev. Lett. 72, 1588 (1994). arXiv:hep-th/9312206

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. G. Barnich, M. Henneaux, Phys. Lett. B 311, 123 (1993). arXiv:hep-th/9304057

    Article  MathSciNet  ADS  Google Scholar 

  40. E.C.G. Stückelberg, Helv. Phys. Acta 11, 299 (1938)

    Google Scholar 

  41. H. Ruegg, M. Ruiz-Altaba, Int. J. Mod. Phys. A 19, 3265 (2004) arXiv:hep-th/0304245

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. N. Nakanishi, Prog. Theor. Phys. 35, 1111 (1966)

    Article  ADS  Google Scholar 

  43. B. Lautrup, Mat. Fys. Medd. Kon. Dan. Vid.-Sel. Medd. 35, 29 (1967)

    Google Scholar 

  44. O. Piguet, S.P. Sorella, Lect. Notes Phys. M28, 1 (1995)

    MathSciNet  Google Scholar 

  45. P.A. Grassi, Nucl. Phys. B 560, 499 (1999). arXiv:hep-th/9908188

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. P.A. Grassi, Nucl. Phys. B 462, 524 (1996). arXiv:hep-th/9505101

    Article  ADS  Google Scholar 

  47. C. Becchi, R. Collina, Nucl. Phys. B 562, 412 (1999). arXiv:hep-th/9907092

    Article  ADS  Google Scholar 

  48. R. Ferrari, M. Picariello, A. Quadri, Ann. Phys. 294, 165 (2001) arXiv:hep-th/0012090

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Quadri, J. High Energy Phys. 0205, 051 (2002). arXiv:hep-th/0201122

    Article  MathSciNet  ADS  Google Scholar 

  50. J. Zinn-Justin, Renormalization of gauge theories, in Int. Summer Inst. for Theoretical Physics, Bonn, West Germany, July 29–August 9, 1974. Published in Bonn Conf. 1974:2 (QCD161:I83:1974)

  51. R. Ferrari, A. Quadri, J. High Energy Phys. 0411, 019 (2004). arXiv:hep-th/0408168

    Article  ADS  Google Scholar 

  52. W. Troost, P. van Nieuwenhuizen, A. Van Proeyen, Nucl. Phys. B 333, 727 (1990)

    Article  ADS  Google Scholar 

  53. M. Henneaux, A. Wilch, Phys. Rev. D 58, 025017 (1998) arXiv:hep-th/9802118

    Article  MathSciNet  ADS  Google Scholar 

  54. P. Sikivie, L. Susskind, M.B. Voloshin, V.I. Zakharov, Nucl. Phys. B 173, 189 (1980)

    Article  ADS  Google Scholar 

  55. A. De Roeck et al., Eur. Phys. J. C 66, 525 (2010). arXiv:0909.3240 [hep-ph]

    Article  ADS  Google Scholar 

  56. ALEPH, DELPHI, L3, OPAL and SLD Collaborations, Phys. Rep. 427, 257 (2006). arXiv:hep-ex/0509008

    ADS  Google Scholar 

  57. article in preparation

  58. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  59. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Quadri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quadri, A. The algebra of physical observables in non-linearly realized gauge theories. Eur. Phys. J. C 70, 479–489 (2010). https://doi.org/10.1140/epjc/s10052-010-1440-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1440-1

Keywords

Navigation