Skip to main content

Far-from-equilibrium quantum many-body dynamics

Abstract

A theory of real-time quantum many-body dynamics is evaluated in detail. It is based on a generating functional of correlation functions where the closed time contour extends only to a given time. Expanding the contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time-evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behavior of non-equilibrium time evolution. For the specific case of a bosonic \(\mathcal{N}\)-component φ 4-theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a \(1/\mathcal{N}\) expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. Gasenzer, J.M. Pawlowski, Phys. Lett. B 670, 135 (2008)

    Article  ADS  Google Scholar 

  2. 2.

    C.D. Fertig, K.M. O’Hara, J.H. Huckans, S.L. Rolston, W.D. Phillips, J.V. Porto, Phys. Rev. Lett. 94, 120403 (2005)

    Article  ADS  Google Scholar 

  3. 3.

    T. Kinoshita, T. Wenger, D.S. Weiss, Nature 440, 900 (2006)

    Article  ADS  Google Scholar 

  4. 4.

    S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, J. Schmiedmayer, Nature 449, 324 (2007)

    Article  ADS  Google Scholar 

  5. 5.

    S. Ritter, A. Öttl, T. Donner, T. Bourdel, M. Köhl, T. Esslinger, Phys. Rev. Lett. 98, 090402 (2007)

    Article  ADS  Google Scholar 

  6. 6.

    J. Estève, C. Gross, A. Weller, S. Giovanazzi, M.K. Oberthaler, Nature Phys. 455, 1216 (2008)

    Article  ADS  Google Scholar 

  7. 7.

    T. Gericke, P. Würtz, D. Reitz, T. Langen, H. Ott, Nature Phys. 4, 949 (2008)

    Article  ADS  Google Scholar 

  8. 8.

    W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  9. 9.

    M. Karski, L. Förster, J.M. Choi, W. Alt, A. Widera, D. Meschede, Phys. Rev. Lett. 102, 053001 (2009)

    Article  ADS  Google Scholar 

  10. 10.

    T. Heinzel, Mesoscopic Electronics in Solid State Nanostructures (VCH-Wiley, Berlin, 2006)

    Book  Google Scholar 

  11. 11.

    P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  12. 12.

    M. Strickland, J. Phys. G 34, S429 (2007)

    Article  ADS  Google Scholar 

  13. 13.

    R. Micha, I.I. Tkachev, Phys. Rev. D 70, 043538 (2004)

    Article  ADS  Google Scholar 

  14. 14.

    C. Wetterich, Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  15. 15.

    C. Bagnuls, C. Bervillier, Phys. Rept. 348, 92 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  16. 16.

    J. Berges, N. Tetradis, C. Wetterich, Phys. Rept. 363, 223 (2002)

    MATH  MathSciNet  ADS  Google Scholar 

  17. 17.

    J. Polonyi, Cent. Eur. J. Phys. 1, 1 (2003)

    Article  Google Scholar 

  18. 18.

    M. Salmhofer, C. Honerkamp, Prog. Theor. Phys. 105, 1 (2001)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  19. 19.

    B. Delamotte, D. Mouhanna, M. Tissier, Phys. Rev. B 69, 134413 (2004)

    Article  ADS  Google Scholar 

  20. 20.

    H. Gies, Lect. Notes 2006 ECT School “Renormalization group and effective field theory approaches to many-body systems”, Trento, arXiv:hep-ph/0611146 (2006)

  21. 21.

    D.F. Litim, J.M. Pawlowski, in: The Exact Renormalization Group, ed. by A. Krasnitz et al. (World Scientific, Singapore, 1999)

    Google Scholar 

  22. 22.

    D.F. Litim, J.M. Pawlowski, J. High Energy Phys. 11, 026 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. 23.

    J.M. Pawlowski, Ann. Phys. 322, 2831 (2007)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  24. 24.

    L. Canet, B. Delamotte, O. Deloubriere, N. Wschebor, Phys. Rev. Lett. 92, 195703 (2004)

    Article  ADS  Google Scholar 

  25. 25.

    J.I. Latorre, C.A. Lutken, E. Rico, G. Vidal, Phys. Rev. A 71, 034301 (2005)

    Article  ADS  Google Scholar 

  26. 26.

    S. Kehrein, Phys. Rev. Lett. 95, 056602 (2005)

    Article  ADS  Google Scholar 

  27. 27.

    A. Mitra, S. Takei, Y.B. Kim, A.J. Millis, Phys. Rev. Lett. 97, 236808 (2006)

    Article  ADS  Google Scholar 

  28. 28.

    J. Zanella, E. Calzetta, hep-th/0611222 (2006)

  29. 29.

    L. Canet, H. Chate, J. Phys. A 40, 1937 (2007)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  30. 30.

    R. Gezzi, T. Pruschke, V. Meden, Phys. Rev. B 75, 045324 (2007)

    Article  ADS  Google Scholar 

  31. 31.

    S.G. Jakobs, V. Meden, H. Schoeller, Phys. Rev. Lett. 99, 150603 (2007)

    Article  ADS  Google Scholar 

  32. 32.

    T. Korb, F. Reininghaus, H. Schoeller, J. König, Phys. Rev. B 76, 165316 (2007)

    Article  ADS  Google Scholar 

  33. 33.

    S. Matarrese, M. Pietroni, J. Cosmol. Astropart. Phys. 0706, 026 (2007)

    Article  ADS  Google Scholar 

  34. 34.

    C. Karrasch, R. Hedden, R. Peters, T. Pruschke, K. Schönhammer, V. Meden, J. Phys.: Condens. Matter 20, 345205 (2008)

    Article  Google Scholar 

  35. 35.

    S.G. Jakobs, M. Pletyukhov, H. Schoeller, J. Phys. A: Math. Theor. 43, 103001 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  36. 36.

    H. Schoeller, Eur. Phys. J. ST 168, 179 (2009)

    Google Scholar 

  37. 37.

    C. Wetterich, Phys. Rev. Lett. 78, 3598 (1997)

    Article  ADS  Google Scholar 

  38. 38.

    C. Wetterich, Phys. Rev. E 56, 2687 (1997)

    Article  ADS  Google Scholar 

  39. 39.

    L.M.A. Bettencourt, C. Wetterich, Phys. Lett. B 430, 140 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  40. 40.

    G. Vidal, Phys. Rev. Lett. 93, 040502 (2004)

    Article  ADS  Google Scholar 

  41. 41.

    A. Daley, C. Kollath, U. Schollwöck, G. Vidal, J. Stat. Mech.: Theory Exp. P04005 (2004)

  42. 42.

    S.R. White, A.E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004)

    Article  ADS  Google Scholar 

  43. 43.

    S.R. Manmana, A. Muramatsu, R.M. Noack, AIP Conf. Proc. 789, 269 (2005)

    Article  ADS  Google Scholar 

  44. 44.

    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  Google Scholar 

  45. 45.

    J. Berges, Nucl. Phys. A 699, 847 (2002)

    MATH  Article  ADS  Google Scholar 

  46. 46.

    G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, J. Serreau, Phys. Rev. D 66, 045008 (2002)

    Article  ADS  Google Scholar 

  47. 47.

    J. Berges, AIP Conf. Proc. 739, 3 (2005), hep-ph/0409233

    Article  ADS  Google Scholar 

  48. 48.

    B. Mihaila, Phys. Rev. D 68, 036002 (2003)

    Article  ADS  Google Scholar 

  49. 49.

    F. Cooper, J.F. Dawson, B. Mihaila, Phys. Rev. D 67, 051901(R) (2003)

    ADS  Google Scholar 

  50. 50.

    F. Cooper, J.F. Dawson, B. Mihaila, Phys. Rev. D 67, 056003 (2003)

    Article  ADS  Google Scholar 

  51. 51.

    J. Berges, J. Serreau, Phys. Rev. Lett. 91, 111601 (2003)

    Article  ADS  Google Scholar 

  52. 52.

    A. Arrizabalaga, J. Smit, A. Tranberg, J. High Energy Phys. 10, 017 (2004)

    Article  ADS  Google Scholar 

  53. 53.

    J. Berges, S. Borsanyi, J. Serreau, Nucl. Phys. B 660, 51 (2003)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  54. 54.

    J. Berges, S. Borsanyi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004)

    Article  ADS  Google Scholar 

  55. 55.

    T. Gasenzer, J. Berges, M.G. Schmidt, M. Seco, Phys. Rev. A 72, 063604 (2005)

    Article  ADS  Google Scholar 

  56. 56.

    G. Aarts, A. Tranberg, Phys. Rev. D 74, 025004 (2006)

    Article  ADS  Google Scholar 

  57. 57.

    J. Berges, T. Gasenzer, Phys. Rev. A 76, 033604 (2007)

    Article  ADS  Google Scholar 

  58. 58.

    T. Gasenzer, Eur. Phys. J. ST 168, 89 (2009), arXiv:0812.0004 [cond-mat.other]

    Google Scholar 

  59. 59.

    J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  60. 60.

    G. Baym, Phys. Rev. 127, 1391 (1962)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  61. 61.

    J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)

    MATH  Article  ADS  Google Scholar 

  62. 62.

    C. Scheppach, J. Berges, T. Gasenzer, Phys. Rev. A 81, 033611 (2010)

    Article  ADS  Google Scholar 

  63. 63.

    A.V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P.S. Julienne, J. Ye, P. Zoller, E. Demler, M.D. Lukin, A.M. Rey, arXiv:0905.2610v1 [cond-mat.quant-gas] (2009)

  64. 64.

    J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  65. 65.

    J. Schwinger, J. Math. Phys. 2, 407 (1961)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  66. 66.

    K.T. Mahanthappa, Phys. Rev. 126, 329 (1962)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  67. 67.

    P.M. Bakshi, K.T. Mahanthappa, J. Math. Phys. 4(1), 12 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  68. 68.

    L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  69. 69.

    L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964)

    Google Scholar 

  70. 70.

    D. Boyanovsky, H.J. de Vega, R. Holman, M. Simionato, Phys. Rev. D 60, 065003 (1999)

    Article  ADS  Google Scholar 

  71. 71.

    D. Boyanovsky, H.J. de Vega, Ann. Phys. 307, 335 (1999)

    ADS  Google Scholar 

  72. 72.

    S.-I. Ei, K. Fujii, T. Kunihiro, Ann. Phys. 280, 236 (2000)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  73. 73.

    Y. Hatta, T. Kunihiro, Ann. Phys. 298, 24 (2000)

    MathSciNet  ADS  Google Scholar 

  74. 74.

    D.R. Hartree, Proc. Camb. Philos. Soc. 24, 89 (1928)

    Article  Google Scholar 

  75. 75.

    D.R. Hartree, Proc. Camb. Philos. Soc. 24, 111 (1928)

    Article  Google Scholar 

  76. 76.

    V. Fock, Z. Phys. 61, 126 (1930)

    Article  ADS  Google Scholar 

  77. 77.

    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Addison-Wesley, New York, 1995)

    Google Scholar 

  78. 78.

    J.-P. Blaizot, A. Ipp, R. Mendez-Galain, N. Wschebor, Nucl. Phys. A 784, 376 (2007)

    Article  ADS  Google Scholar 

  79. 79.

    J. Berges, Phys. Rev. D 70, 105010 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  80. 80.

    E.P. Gross, Nuovo Cimento 20, 454 (1961)

    MATH  Article  Google Scholar 

  81. 81.

    L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961)

    Google Scholar 

  82. 82.

    L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  83. 83.

    G. Aarts, J. Berges, Phys. Rev. Lett. 88, 041603 (2002)

    Article  ADS  Google Scholar 

  84. 84.

    M. Alford, J. Berges, J.M. Cheyne, Phys. Rev. D 70, 125002 (2004)

    Article  ADS  Google Scholar 

  85. 85.

    K. Temme, T. Gasenzer, Phys. Rev. A 74, 053603 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Gasenzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gasenzer, T., Keßler, S. & Pawlowski, J.M. Far-from-equilibrium quantum many-body dynamics. Eur. Phys. J. C 70, 423–443 (2010). https://doi.org/10.1140/epjc/s10052-010-1430-3

Download citation

Keywords

  • Dynamic Equation
  • Time Argument
  • Initial Density Matrix
  • Bare Vertex
  • Close Time Path