Skip to main content
Log in

New physics, the cosmic ray spectrum knee, and pp cross section measurements

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We explore the possibility that a new-physics interaction can provide an explanation for the knee just above 106 GeV in the cosmic ray spectrum. We model the new-physics modifications to the total proton–proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new-physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new-physics proposal for the cosmic ray knee at the Large Hadron Collider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Kulikov, G. Khristiansen, J. Exp. Theor. Phys. 35, 635 (1958)

    Google Scholar 

  2. M. Nagano et al. (The Akeno Collaboration), J. Phys. G 10, 1295

  3. M. Glasmacher et al. (The Casa Mia Collaboration), Astropart. Phys. 10, 291

  4. T. Antoni et al. (The KASKADE Collaboration), Astropart. Phys. 24, 1

  5. M. Amenomori et al. (The Tibet III Collaboration), Astrophys. J. 678, 1165 (2008)

    Article  ADS  Google Scholar 

  6. J. Blümer, R. Engel, J. Hörandel, Prog. Part. Nucl. Phys. 63, 293 (2009). This reference gives an up-to-date and comprehensive review of cosmic rays from the knee to the highest energies

    Article  ADS  Google Scholar 

  7. D. Kazanas, A. Nicolaidis, Hamburg 2001, Cosmic Ray 1760 (2001)

  8. D. Kazanas, A. Nicolaidis, Gen. Relativ. Gravit. 35, 1117 (2003)

    Article  MATH  ADS  Google Scholar 

  9. M. Masip, I. Mastromatteo, J. Cosmol. Astropart. Phys. 0812, 003 (2008)

    Article  ADS  Google Scholar 

  10. R. Barcelo’, M. Masip, I. Mastromatteo, J. Cosmol. Astropart. Phys. 0906, 027 (2009)

    Article  ADS  Google Scholar 

  11. R. Wigmans, Astropart. Phys. 19, 379 (2003)

    Article  ADS  Google Scholar 

  12. S. Nikolsky, F. Romachin, Yad. Fiz. 63, 1888 (2000). (Phys. At. Nucl. 63, 1799 (2000))

    Google Scholar 

  13. R.M. Baltrusaitis et al., Phys. Rev. Lett. 52, 1380 (1984)

    Article  ADS  Google Scholar 

  14. M. Honda et al., Phys. Rev. Lett. 70, 525 (1993)

    Article  ADS  Google Scholar 

  15. M. Deile (TOTEM Collaboration), Published in Hamburg 2007, Blois 2007, Forward physics and QCD, 153 (2007)

  16. K. Österberg (TOTEM Collaboration), J. Phys. Conf. Ser. 110, 022037 (2008)

    Article  Google Scholar 

  17. D. Cline, F. Halzen, J. Luthe, Phys. Rev. Lett. 31, 491 (1973)

    Article  ADS  Google Scholar 

  18. S. Ellis, M. Kislinger, Phys. Rev. D 9, 2027 (1974)

    Article  ADS  Google Scholar 

  19. F. Halzen, Nucl. Phys. B 92, 404 (1975)

    Article  ADS  Google Scholar 

  20. N. Antoniou, C. Cjiou-Lahanas, S. Vlassopulos, F. Herzog, Phys. Lett. B 93, 472 (1980)

    Article  ADS  Google Scholar 

  21. F. Halzen, F. Herzog, Phys. Rev. D 30, 2326 (1984)

    Article  ADS  Google Scholar 

  22. T. Gaisser, F. Halzen, Phys. Rev. Lett. 54, 1754 (1985)

    Article  ADS  Google Scholar 

  23. R. Durand, in Proceedings of he Summer Study on the Design and Utilization of the Superconducting Super Collider, ed. by P. Donaldson, J. Morfin, Snowmass, Colorado, 1984 (Division of Particles and Fields of the American Physical Society, New York, 1985), p. 258

    Google Scholar 

  24. L. Durand, H. Pi, Phys. Rev. Lett. 58, 303 (1987)

    Article  ADS  Google Scholar 

  25. L. Durand, H. Pi, Phys. Rev. 38, 78 (1988)

    ADS  Google Scholar 

  26. M.M. Block, F. Halzen, B. Margolis, Phys. Rev. D 45, 839 (1992)

    Article  ADS  Google Scholar 

  27. M.M. Block, F. Halzen, T. Stanev, Phys. Rev. Lett. 83, 4926 (1999)

    Article  ADS  Google Scholar 

  28. M.M. Block, F. Halzen, T. Stanev, Phys. Rev. D 62, 077501 (2000)

    Article  ADS  Google Scholar 

  29. M.M. Block, F. Halzen, Phys. Rev. D 70, 091901 (2004)

    Article  ADS  Google Scholar 

  30. M.M. Block, F. Halzen, Phys. Rev. D 72, 036006 (2005)

    Article  ADS  Google Scholar 

  31. M.M. Block, Phys. Rev. D 76, 111503 (2007)

    Article  ADS  Google Scholar 

  32. R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)

    ADS  Google Scholar 

  33. T.K. Gaisser, U.P. Sukhatme, G.B. Yodh, Phys. Rev. D 36, 1350 (1987)

    Article  ADS  Google Scholar 

  34. C. Amsler et al., Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  35. E. Eichten, I. Hinchliffe, K. Lane, C. Quigg, Rev. Mod. Phys. 56, 579 (1984)

    Article  ADS  Google Scholar 

  36. M.M. Block, R. Fletcher, F. Halzen, B. Margolis, P. Valin, Phys. Rev. D 41, 978 (1990)

    Article  ADS  Google Scholar 

  37. A.B. Kaidalov, K.A. Ter-Martirosian, Sov. J. Nucl. Phys. 39, 979 (1984)

    Google Scholar 

  38. N.N. Kalmykov, S.S. Ostapchenko, A.I. Pavlov, Nucl. Phys. B (Proc. Suppl.) 52, 17 (1997)

    Article  ADS  Google Scholar 

  39. R.S. Fletcher, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 50, 5710 (1994)

    Article  ADS  Google Scholar 

  40. V. Barger, F. Halzen, T.K. Gaisser, C.J. Noble, G.B. Yodh, Phys. Rev. Lett. 33, 1051 (1974)

    Article  ADS  Google Scholar 

  41. L. Anchordoqui, M.T. Dova, A. Mariazzi, T. McCauley, T. Paul, S. Reucroft, J. Swain, Ann. Phys. 314, 145 (2004)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixit, A., Jain, P., McKay, D.W. et al. New physics, the cosmic ray spectrum knee, and pp cross section measurements. Eur. Phys. J. C 68, 573–580 (2010). https://doi.org/10.1140/epjc/s10052-010-1382-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1382-7

Keywords

Navigation