Skip to main content
Log in

Charge effect and finite ’t Hooft coupling correction on drag force and jet quenching parameter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The effects of charge and finite ’t Hooft coupling correction on drag force and jet quenching parameter are investigated. To study charge effect and finite ’t Hooft coupling correction, we consider Maxwell charge and Gauss–Bonnet terms, respectively. The background is Reissner–Nordström–AdS black brane solution in Gauss–Bonnet gravity. It is shown that these corrections affect drag force and jet quenching parameter. We find an analytic solution of drag force in this background which depends on Gauss–Bonnet coupling and charge. We set Gauss–Bonnet coupling to be zero and find drag force in the case of Reissner–Nordström–AdS background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma? Nucl. Phys. A 750, 64 (2005). arXiv:hep-ph/0405066

    Article  ADS  Google Scholar 

  2. K. Adcox et al. (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005). arXiv:nucl-ex/0410003

    Article  ADS  Google Scholar 

  3. I. Arsene et al. (BRAHMS Collaboration), Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 757, 1 (2005). arXiv:nucl-ex/0410020

    Article  ADS  Google Scholar 

  4. J. Adams et al. (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005). arXiv:nucl-ex/0501009

    Article  ADS  Google Scholar 

  5. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998); [Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200

    MATH  MathSciNet  ADS  Google Scholar 

  6. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

    MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    MATH  MathSciNet  Google Scholar 

  8. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131

    MATH  MathSciNet  Google Scholar 

  9. H. Liu, K. Rajagopal, U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett. 97, 182301 (2006). arXiv:hep-ph/0605178

    Article  ADS  Google Scholar 

  10. A. Buchel, On jet quenching parameters in strongly coupled non-conformal gauge theories. Phys. Rev. D 74, 046006 (2006). arXiv:hep-th/0605178

    MathSciNet  ADS  Google Scholar 

  11. J.F. Vazquez-Poritz, Enhancing the jet quenching parameter from marginal deformations. arXiv:hep-th/0605296

  12. E. Caceres, A. Guijosa, On drag forces and jet quenching in strongly coupled plasmas. J. High Energy Phys. 0612, 068 (2006). arXiv:hep-th/0606134

    Article  MathSciNet  ADS  Google Scholar 

  13. F.L. Lin, T. Matsuo, Jet quenching parameter in medium with chemical potential from AdS/CFT. Phys. Lett. B 641, 45 (2006). arXiv:hep-th/0606136

    ADS  Google Scholar 

  14. S.D. Avramis, K. Sfetsos, Supergravity and the jet quenching parameter in the presence of R-charge densities. J. High Energy Phys. 0701, 065 (2007). arXiv:hep-th/0606190

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Armesto, J.D. Edelstein, J. Mas, Jet quenching at finite ’t Hooft coupling and chemical potential from AdS/CFT. J. High Energy Phys. 0609, 039 (2006). arXiv:hep-ph/0606245

    Article  MathSciNet  ADS  Google Scholar 

  16. P.C. Argyres, M. Edalati, J.F. Vazquez-Poritz, No-drag string configurations for steadily moving quark-antiquark pairs in a thermal bath. J. High Energy Phys. 0701, 105 (2007). arXiv:hep-th/0608118

    Article  ADS  Google Scholar 

  17. P.C. Argyres, M. Edalati, J.F. Vazquez-Poritz, Spacelike strings and jet quenching from a Wilson loop. J. High Energy Phys. 0704, 049 (2007). arXiv:hep-th/0612157

    Article  ADS  Google Scholar 

  18. P.C. Argyres, M. Edalati, J.F. Vazquez-Poritz, Lightlike Wilson loops from AdS/CFT. J. High Energy Phys. 0803, 071 (2008). arXiv:0801.4594 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Nakano, S. Teraguchi, W.Y. Wen, Drag Force, Jet Quenching, and AdS/QCD. Phys. Rev. D 75, 085016 (2007). arXiv:hep-ph/0608274

    ADS  Google Scholar 

  20. C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries. J. High Energy Phys. 0609, 032 (2006). arXiv:hep-th/0605191

    Article  ADS  Google Scholar 

  21. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, L.G. Yaffe, Energy loss of a heavy quark moving through N=4 supersymmetric Yang–Mills plasma. J. High Energy Phys. 0607, 013 (2006). arXiv:hep-th/0605158

    Article  MathSciNet  ADS  Google Scholar 

  22. S.S. Gubser, Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006). arXiv:hep-th/0605182

    MathSciNet  ADS  Google Scholar 

  23. S.S. Gubser, Comparing the drag force on heavy quarks in N=4 super-Yang–Mills theory and QCD. Phys. Rev. D 76, 126003 (2007). arXiv:hep-th/0611272

    ADS  Google Scholar 

  24. J. Casalderrey-Solana, D. Teaney, Heavy quark diffusion in strongly coupled N=4 Yang Mills. Phys. Rev. D 74, 085012 (2006). arXiv:hep-ph/0605199

    ADS  Google Scholar 

  25. E. Caceres, A. Guijosa, Drag force in charged N=4 SYM plasma. J. High Energy Phys. 0611, 077 (2006). arXiv:hep-th/0605235

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Matsuo, D. Tomino, W.Y. Wen, Drag force in SYM plasma with B field from AdS/CFT. J. High Energy Phys. 0610, 055 (2006). arXiv:hep-th/0607178

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Bitaghsir Fadafan, work in progress

  28. G. Policastro, D.T. Son, A.O. Starinets, The shear viscosity of strongly coupled N=4 supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). arXiv:hep-th/0104066

    Article  ADS  Google Scholar 

  29. P. Kovtun, D.T. Son, A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons. J. High Energy Phys. 0310, 064 (2003). arXiv:hep-th/0309213

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Buchel, J.T. Liu, Universality of the shear viscosity in supergravity. Phys. Rev. Lett. 93, 090602 (2004). arXiv:hep-th/0311175

    Article  ADS  Google Scholar 

  31. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231

    Article  ADS  Google Scholar 

  32. M. Brigante, H. Liu, R.C. Myers, S. Shenker, S. Yaida, Viscosity bound violation in higher derivative gravity. arXiv:0712.0805 [hep-th]

  33. Y. Kats, P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory. arXiv:0712.0743 [hep-th]

  34. M. Brigante, H. Liu, R.C. Myers, S. Shenker, S. Yaida, The viscosity bound and causality violation. arXiv:0802.3318 [hep-th]

  35. Shear viscosity of CFT plasma at finite coupling. Phys. Lett. B 665, 298 (2008). arXiv:0804.3161 [hep-th]

  36. I.P. Neupane, N. Dadhich, Higher curvature gravity: entropy bound and causality violation. arXiv:0808.1919 [hep-th]

  37. X.H. Ge, Y. Matsuo, F.W. Shu, S.J. Sin, T. Tsukioka, Viscosity bound, causality violation and instability with stringy correction and charge. arXiv:0808.2354 [hep-th]

  38. X.H. Ge, S.J. Sin, Shear viscosity, instability and the upper bound of the Gauss–Bonnet coupling constant. J. High Energy Phys. 0905, 051 (2009). arXiv:0903.2527 [hep-th]

    Article  ADS  Google Scholar 

  39. M.R. Douglas, S. Kachru, Flux compactification. Rev. Mod. Phys. 79, 733 (2007). arXiv:hep-th/0610102

    Article  MathSciNet  ADS  Google Scholar 

  40. R.G. Cai, Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133

    MathSciNet  ADS  Google Scholar 

  41. S. Nojiri, S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining-deconfining phases in dual CFT. Phys. Lett. B 521, 87 (2001). [Erratum-ibid. B 542, 301 (2002)]. arXiv:hep-th/0109122

    MATH  MathSciNet  ADS  Google Scholar 

  42. S. Nojiri, S.D. Odintsov, (Anti-) de Sitter black holes in higher derivative gravity and dual conformal field theories. Phys. Rev. D 66, 044012 (2002). arXiv:hep-th/0204112

    MathSciNet  ADS  Google Scholar 

  43. M. Cvetic, S. Nojiri, S.D. Odintsov, Black hole thermodynamics and negative entropy in deSitter and anti-deSitter Einstein-Gauss–Bonnet gravity. Nucl. Phys. B 628, 295 (2002). arXiv:hep-th/0112045

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. K.B. Fadafan, R 2 curvature-squared corrections on drag force. arXiv:0803.2777 [hep-th]

  45. J.F. Vazquez-Poritz, Drag force at finite ’t Hooft coupling from AdS/CFT. arXiv:0803.2890 [hep-th]

  46. S.J. Sin, Gravity Back-reaction to the Baryon Density for Bulk Filling Branes. J. High Energy Phys. 0710, 078 (2007). arXiv:0707.2719 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Bitaghsir Fadafan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadafan, K.B. Charge effect and finite ’t Hooft coupling correction on drag force and jet quenching parameter. Eur. Phys. J. C 68, 505–511 (2010). https://doi.org/10.1140/epjc/s10052-010-1375-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1375-6

Keywords

Navigation